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Abstract

Hyperparameter tuning is an essential step in deep learning
model development that provides better model performance
at the cost of substantial resources. While existing systems
can improve tuning efficiency, they still fail to handle large
models with billions of parameters and efficiently leverage
cluster resources. Motivated by these deficiencies, we intro-
duce Hydro, a surrogate-based hyperparameter tuning service
that optimizes tuning workloads in both the job-level and
cluster-level granularities. Specifically, it consists of two key
components: (1) Hydro Tuner automatically generates and
optimizes surrogate models via scaling, parametrization and
fusion; (2) Hydro Coordinator improves tuning efficiency
and cluster-wide resource utilization by adaptively leveraging
ephemeral and heterogeneous resources. Our comprehensive
experiments on two tuning algorithms across six models show
that Hydro Tuner can dramatically reduce tuning makespan
by up to 78.5× compared with Ray Tune and no reduction in
tuning quality. Hydro’s source code is publicly available at
https://github.com/S-Lab-System-Group/Hydro.

1 Introduction
Over the years, we have witnessed the incredible performance
and rapid popularity of Deep Learning (DL) across many do-
mains, such as vision and speech. However, it is non-trivial
to acquire a qualified DL model because its performance is
highly sensitive to the hyperparameters, which control the
training process and require to be set before training [71].
Poor hyperparameters result in training instability and infe-
rior model quality. Conversely, well-tuned hyperparameters
can significantly improve model performance. For instance,
PyTorch [91] recently applies a new hyperparameter recipe
on ResNet-50 [41] and achieves 80.9% ImageNet classifi-
cation accuracy [18], which is 4.8% higher than the former
version (76.1%). Besides, RoBERTa [75] also demonstrates
the critical impact of hyperparameters on the performance of
large language models. Accordingly, hyperparameter tuning
becomes a common practice during DL model development.

Due to the high dimensionality of the search space, a hy-
perparameter tuning job typically contains a large group of
trials, each with a unique configuration [125]. To accelerate
the tuning process, tech companies and researchers build hy-
perparameter tuning systems as cloud services [1, 8, 39, 92]

or standalone frameworks [32, 71, 72, 82, 125, 127] (Table 1).
However, we argue that state-of-the-art tuning systems are
still expensive and inefficient in practice, as they suffer from
several fundamental problems:
• Unacceptable cost of tuning large models. The extraordi-
nary performance of large foundation models (e.g., BERT
[30], GPT-3 [24]) attracts wide downstream applications
[3, 4, 6]. Meanwhile, the hyperparameter tuning demand for
these models increases rapidly. However, all of the existing
tuning systems require training multiple trials using several
times of resources, which is unaffordable for large models
with billions of parameters. For example, training a SOTA
language model PaLM [27] of Google takes over 6,000 TPU-
v4 [59] for around 2 months. Performing a hyperparameter
sweep on such model is intractable [23]. Consequently, hy-
perparameters of most large models are not well-tuned and
can lead to subpar performance [75].
• Inefficient hardware utilization. Recent scheduling works
[46, 114, 115, 124] report that GPUs are commonly underuti-
lized in DL clusters due to massive training jobs involving
mid- or small-scale models. Moreover, despite the growing
trend of foundation models being employed in clusters, large-
scale models often fail to fully utilize hardware resources due
to the huge communication overhead and the presence of bub-
bles in the pipeline parallelism [106]. To improve resource
utilization, some novel tuning systems incorporate features
such as elastic training [32, 71, 82], GPU sharing [125], and
inter-trial fusion [110]. However, these systems have certain
limitations (§8) and often require substantial resources to ex-
plore trivial trials, which results in limited resources being
contributed to the final model.
• Agnostic to cluster-wide resources. Hyperparameter tun-
ing jobs are pervasive and occupy enormous resources in
GPU clusters. As reported by Microsoft [50, 78], “approxi-
mately 90% of models require hyperparameter tuning, with
each tuning job containing 75 trials in median.” However,
existing tuning systems only manage trials over the requested
resources and lack interaction with cluster schedulers. Mean-
while, DL schedulers [36,40,46,87,94,114,123] also overlook
the distinct characteristic of gradually diminishing hardware
demand inherent in hyperparameter tuning jobs [71]. Conse-
quently, the cluster encounters imbalanced resource problem:
the active tuning jobs consistently occupy static resources,
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leaving some of them vacant, while the queued jobs are un-
able to request these idle resources from the scheduler. This
leads to severe queuing delay, which is exacerbated when
long-term large-scale model training jobs coexist and they
occupy the majority of cluster resources.

To bridge these gaps, we design Hydro, a surrogate-based
hyperparameter tuning service that optimizes tuning jobs in
both the job-level and cluster-level granularities via automated
model scaling, fusion and interleaving. The core design of
Hydro derives from the following three insights. First, it is
feasible to search hyperparameters with a smaller model. In-
stead of tuning hyperparameters directly on the target model,
we find it is possible to tune a model with a much smaller
surrogate model by applying a novel hyperparameter transfer
theory [117, 121]. Second, cross-model fusion can be used
to improve resource utilization. Since the scaled surrogate
model is prone to incur GPU underutilization, we can utilize
the model architecture consistency of different trials to fuse
them into a single one, achieving much higher GPU utilization
and training throughput. Third, ephemeral bubble resources
in the datacenter can be leveraged for tuning. Large model
training jobs exist in the long term and occupy the majority of
resources, which incurs the starvation of other jobs. We can
leverage pipeline bubbles of large models to greatly extend
the tuning job resources in an interleaving execution way,
without hurting the training throughout of large models.

Incorporating the above insights, we build Hydro service
to minimize the makespan of tuning workloads and improve
the cluster-wide resource utilization. It consists of two key
system components: (1) Hydro Tuner is the user interface
that automatically generates surrogate models by scaling and
parametrization. It optimizes tuning efficiency via inter-trial
and intra-trial fusion, which involve combining multiple mod-
els into a single entity and subsequently performing compiler-
based optimization. Besides, it efficiently orchestrates the
tuning process with adaptive fusion and eager transfer mecha-
nisms. (2) Hydro Coordinator is the datacenter interface that
interacts with the scheduler to dynamically allocate resources
and execute trials. It extends tuning resources by interleaving
training with pipeline-enabled large model training tasks, ef-
fectively utilizing idle time intervals on each node known as
bubbles, which are caused by the gaps between the forward
and backward processing of microbatches [106]. Besides, it
improves resource utilization and cluster-wide performance
by heterogeneity-aware allocation.

To extensively assess the performance of Hydro, we con-
duct evaluations across 6 models, such as GPT-3 XL [24] and
ResNet [41]. Experiments on Hydro Tuner show that it sub-
stantially outperforms Ray by 8.7∼78.5× on makespan reduc-
tion with single-fidelity tuning algorithm, while obtaining bet-
ter final model quality. Besides, our experiments on Hydro Co-
ordinator demonstrate that interleaving with a large pipelined
model can further extend the resource of tuning workload,
without sacrificing the throughput of the large model.

Features
Cloud Services HPO Frameworks

Hydro
Vizier SageMaker NNI Ray

Distributed Environment ✔ ✔ ✔ ✔ ✔

Elastic Training ♦ ♦ ♦ ✔ ✔

Auto Model Scaling ✘ ✘ ✘ ✘ ✔

Surrogate HP Transfer ✘ ✘ ✘ ✘ ✔

Inter-Trial Fusion ✘ ✘ ♦ ✘ ✔

Intra-Trial Fusion ✘ ✘ ✘ ✘ ✔

Heterogeneity Awareness ✘ ✘ ✘ ✘ ✔

Interleaving Training ✘ ✘ ✘ ✘ ✔

Table 1: Comparison between Hydro and existing popular
HPO systems: Google Vizier [39, 105], Amazon SageMaker
[28, 92], Microsoft NNI [9, 127] and Anyscale Ray [72, 84].
♦ denotes system cannot support the feature for many cases.

Table 1 compares Hydro with existing tuning systems. To
summarize, we make the following contributions:
★ We build a holistic system that automatically applies the
novel hyperparameter transfer theory together with multiple
system techniques to jointly improve the tuning efficiency.
★ We identify the opportunities for cluster-wide optimization
in the datacenter, including squeezing bubble resources with
interleaving and heterogeneity-aware trial allocation.
★ We demonstrate the excellent performance of surrogate-
based hyperparameter tuning across general models.

2 Background and Motivation
2.1 Hyperparameter Tuning
Hyperparameter Tuning (i.e., Hyperparameter Optimization,
HPO) aims to identify the optimal hyperparameters via mas-
sive configuration exploration [71, 82]. In the general work-
flow of an HPO job: (1) the user designates a search space of
hyperparameters to explore; (2) the tuning algorithm creates
a set of training trials and each trial contains one unique hy-
perparameter configuration sampled from the search space;
(3) the HPO system coordinates trials execution until the best
hyperparameter configuration is found.

Existing research works typically optimize HPO efficiency
from the tuning algorithm [33, 47, 63, 64, 67, 68, 70, 79, 104]
or system [32, 60, 69, 71, 82, 110, 125, 127] aspects:
Algorithm taxonomy. Depending on whether to enable early
stopping, tuning algorithms can be divided into two categories
[100]: (1) single-fidelity (e.g, Random [22], Bayes [104])
algorithms require each trial to be fully trained, which is
accurate but inefficient; (2) multi-fidelity (e.g., ASHA [63],
BOHB [33]) algorithms stop unpromising trials via successive
halving [53] or curve fitting [31] strategies. They are efficient
but may miss the best hyperparameter configuration due to
the use of “low-fidelity” evaluations. Hydro well supports
both the single- and multi-fidelity algorithms.
System optimization. To further improve the tuning effi-
ciency and resource utilization, there are two advanced tech-
niques applied in state-of-the-art HPO systems: (1) elastic
training dynamically allocates more GPU resources to the top



performing trials [71] and further adjusts the entire requested
resources [32, 82, 94]. (2) GPU sharing (i.e., trial packing)
allows multiple trials to share the GPU using the NVIDIA
MPS [13] or MIG [12] technologies to achieve higher uti-
lization [125]. Different from them, Hydro combines scaling,
fusion and interleaving for ultimate efficiency.

2.2 Hyperparameter Transfer Theory
Recently, the remarkable success of foundation models has
ignited a keen interest in exploring the relationship between
model size and its optimal hyperparameter. Scaling Laws [42,
43,52] empirically study the power-law functions of batch size
and learning rate across varying model sizes. Nevertheless, the
authors [52] candidly admit that only limited configurations
are tested and the rule-of-thumb formulas break down when
dealing with models that exceed one billion parameters.

Beyond heuristic exploration, some novel hyperparameter
transfer strategies [49, 117, 121] are proposed by DL theo-
rists. For simplicity, we call them parametrization, the rule
of how to adjust hyperparameters accordingly when models
grow/shrink in both the width and depth. Different from exist-
ing HPO systems, Hydro enables automatic hyperparameter
transfer based on parametrization. To make the obscure theory
more accessible, we present a concise background overview
of the underlying theory. [116] systematically builds a coher-
ent theoretical framework for parameterization: the feature
learning effect γ of a MLP model is proportional to

γ≡ L
w1−p , p ∈ [0,1] (1)

where w, L indicates the width and depth of the neural network
respectively. For the purpose of simplicity, we assume that the
numbers of the hidden-layer neurons are all of similar order,
w1,w2, ...wL−1 ∼ w. p is a metaparameter that interpolates
different parametrization strategies into a unified framework,
which is determined by inherent strategy. The objective is two-
fold: first, to maintain a fixed γ that allows hyperparameters
transfer across different model sizes, and second, to strive for
a larger γ that facilitates better feature learning. To this end,
there are two directions of parametrization:

(1) Neural Tangent (NT) parametrization (p = 0) [49]. It
naturally arose from the study of infinite-wide neural network
as Neural Tangent Kernel (NTK) [49, 89], which can keep
γ fixed by scaling the depth along with the width as L ∼ w.
NTK is a kernel method to explain the evolution of neural
networks during training, which is derived by applying the
first-order Taylor expansion to linearized models. It belongs
to the lazy training regime where the weights move very
little [121], so that linearization approximately holds around
the initial parameters and does not learn features, which is a
fatal weakness of the NTK theory in practice. Moreover, NT
parametrization does not make sense since the wider model
does not always perform better in this context [117], which
conflicts with common observations [43, 52].

(2) Maximal Update (MU) parametrization (p = 1) [121].
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Figure 1: Effect of Hydro parametrization. The training loss
against the learning rate on MLP (a, b) and Transformer (c,
d) with different widths. S denotes the model scaling ratio.

It generalizes the mean-field limit of the 1-hidden-layer case
[25, 80] and should be the unique parametrization that re-
tains the representation-learning capability (non-rigorously
referred to active training, in contrast to lazy training of
NT parametrization) for a large-scale neural network, which
means training does not become trivial or stuck at the initial-
ization in the large width limit. Colloquially, it is designed
to solve the issue that the input layer is updated much more
slowly than the output layer, and make all hidden activations
update with the same speed in terms of width [117].

Hydro adopts the MU parametrization, which will be fur-
ther elaborated in §4.1 and we refer readers to [98, 117–122]
for a comprehensive review of the theory.

2.3 Opportunities for Efficient Tuning
Lightweight surrogate-based tuning. Current HPO systems
search hyperparameters directly on the target model, which is
intuitive but inefficient. In contrast, Hydro makes it possible
to tune a model with a much smaller surrogate model via
applying a novel hyperparameter transfer technique (afore-
mentioned in §2.2). For a clearer illustration of the surrogate-
based tuning effect, we employ Hydro parametrization on two
toy models and plot their converged training loss against a
range of learning rates as shown in Figure 1. Specifically, the
target MLP model contains two hidden layers (width=4096)
and we train it with SGD on CIFAR-10. Similarly, the tar-
get Transformer model contains two TransformerEncoder
layers (width=4096, i.e., dmodel) and we train it with Adam
on WikiText-2. Besides, we generate surrogate models with
different scaling (shrinking) ratios S, and the smaller model
is depicted by the lighter blue line. For instance, S=2 repre-
sents the model with width=2048. Obviously, the conventional
training paradigm (Figure 1 (a, c)) cannot share the best hy-
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Figure 2: (a) GPU utilization distribution of one partition in
our cluster and a GPU production cluster in Alibaba [115]. (b)
Exponential growth of NVIDIA datacenter GPU capability.
x-axis: GPU model name & release year.
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Figure 3: Model scaling effect of WideResNet-50. (a) Model
GFLOPs (Giga Floating Point Operations). (b) GPU memory.

perparameter across different sizes of models and there are
orders of magnitude optimal learning rate shifts. However,
Hydro parametrization (Figure 1 (b, d)) makes surrogate mod-
els stay approximately the same optimal learning rate as the
target model, which implies the feasibility of surrogate-based
tuning. Furthermore, Hydro parametrization can deliver better
performance since both tuned MLP and Transformer achieve
lower training loss than their counterparts. An intuitive expla-
nation is that the learning rate of the conventional paradigm
must tame logits’ surge, but preceding layers do not learn ap-
preciably. We perform a comprehensive evaluation of several
models in §6.3 and demonstrate the superiority of Hydro.
Fusion of numerous repetitive models. GPUs are commonly
underutilized in DL clusters [45, 46, 115, 124, 125]. Figure 2
(a) plots the Cumulative Distribution Function (CDF) of one-
week GPU utilization in one partition of our cluster, as well
as an Alibaba trace [115] for reference. We find there are only
16% and 35% of GPUs achieving higher than 50% GPU uti-
lization in Alibaba and Shanghai AI Laboratory respectively.
This issue will be exacerbated if the Hydro surrogate-based
tuning technique is applied. For instance, Figure 3 presents the
model scaling effect of training WideResNet-50 on ImageNet,
where GFLOPs follows approximately inverse-square (c1/S2)
trend drop and memory footprint follows roughly c1/S+ c2
trend decrease (ci indicates constant). This implies model
scaling can significantly reduce the computation overhead,
but resources are more prone to be underutilized. To this end,
inspired by JAX vmap function [35, 112], Hydro implements
an inter-trial fusion mechanism to automatically combine
multiple models into one. Operators of multiple trials can be

fused owing to the property of HPO tasks: essential is a set
of identical models (or with minor mutation). Compared with
the conventional GPU sharing mechanism (e.g., MPS), Hydro
can achieve higher training throughput, GPU utilization and
lower memory footprint (Figure 8).
Cluster resource awareness. Although HPO jobs are perva-
sive in GPU datacenters, cluster schedulers typically regard
them as general training workloads without any specific de-
sign. On the other hand, HPO systems [9,72,84] are cluster re-
source agnostic. This causes cluster-level inefficiency, such as
long job queuing delay and low GPU utilization. However, the
unique features of HPO jobs bring opportunities for more effi-
cient tuning. (1) Trial throughput insensitivity. Unlike general
DL jobs, HPO jobs are more tolerant to throughput slowdown
of partial trials. Therefore, we can run more trials by lever-
aging ephemeral bubble resources of large language model
training jobs, which are long-term existing in our datacenter
(§5.1). (2) Diminishing resource requirements. Multi-fidelity
HPO jobs usually explore plenty of trials at the beginning
and gradually decrease the search concurrency [32,71,82]. At
the final stage, only a few trials are exploited. Therefore, we
can not only reduce the total resource amount progressively,
but also properly leverage the heterogeneous GPU resource
(§5.2). With the rapid evolution of GPU computing capability
as shown in Figure 2 (b), they become more prone to be un-
derutilized for most small-scale trials [87]. Allocating trials
to appropriate GPUs can significantly improve cluster-wide
efficiency without hurting a single HPO job makespan.

3 Hydro Overview
Design principles & goals. For practical adoptions, Hydro
follows three design principles: (a) Automatic and simple.
Manually converting surrogate models is tedious and error-
prone. Hence, the whole tuning workflow should be auto-
mated and easy to use, which requires minimum user code
modification. (b) Incentive and interference-free. Although
our system focuses on optimizing HPO jobs, it does not sacri-
fice other workload performance. Instead, it is altruistic and
requires fewer resources than conventional systems, which
benefits all cluster users. (c) Modular and extensible. Each
component in Hydro can work independently to support more
scenarios (e.g., cloud). Moreover, Hydro can be applied to
general HPO tasks, and more tuning algorithms can be easily
integrated. In addition, Hydro has two primary objectives: (1)
minimizing the makespan of HPO workloads; (2) improving
the cluster-wide resource utilization.
System architecture. Figure 4 depicts the architecture of
the Hydro service. It consists of two key system components:
Hydro Tuner (blue block) as a user interface to automati-
cally generate surrogate models and optimize tuning trials,
and Hydro Coordinator (purple block) for improving tun-
ing efficiency and datacenter-level resource utilization. Each
component contains several modules for different purposes.
Specifically, there are three main modules in Hydro Tuner:
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Figure 4: Overview of Hydro architecture and workflow.

• Model Shrinker: to obtain surrogate models by automati-
cally tracing, scaling and parametrization.

• Trial Binder: to better utilize accelerators by binding multi-
ple trials and fusing internal operators.

• Trial Planner: to adaptively determine the tuning strategy
based on the profiling information and intermediate results.

Additionally, Hydro Coordinator also includes three modules:
• Bubble Squeezer: to extend tuning workload resources by

interleaving training with a pipeline-enabled large model.
• Heterogeneity-Aware Allocator: to improve resource uti-

lization and cluster-wide performance by allocating proper
accelerators on different tuning stages.

• Elastic Executor: to dynamically execute trials by splitting
fused trials and enabling distributed training.

API Design. Hydro enables high-efficient surrogate-based
hyperparameter tuning with a few lines in the developer’s
code, as shown in Figure 5. It follows the Ray Tune [72] API
to define the search space and invoke the fit() function. To
support Hydro functions, developers only require to wrap their
model, dataloader and optimizer with the prepare_xxx()
API (lines 6∼8). Hydro traces the whole function to control
the trial execution, convert surrogate model, enable model
fusion and elastic training.
Tuning Workflow. The system workflow of Hydro is pre-
sented by black arrows in Figure 4. Specifically, when a devel-
oper wants to tune a model, she only needs to define the search
space and invoke the Hydro APIs (❶). After job creation, Hy-
dro Tuner automatically generates and optimizes surrogate
models by scaling and fusion. Furthermore, it adopts Trial
Planner to efficiently orchestrate the tuning process. Then
Hydro Coordinator is responsible for contacting the cluster

1 import ray, hydro
2 import hydro.train as ht
3

4 def train_func(config):

5 # Wrap model, dataloader and optimizer

6 model = ht.prepare_model(model)

7 data_loader = ht.prepare_data_loader(data_loader)

8 optimizer = ht.prepare_optimizer(SGD, lr=config["lr"])

9 for _ in range(1): # User defined training loop

10 train_epoch(...)

11 result = validate_epoch(...)

12 ray.session.report(result)

13

14 search_space = {"lr": ray.qloguniform(1e-4, 1, 1e-4)}

15 trainer = hydro.Trainer(train_func)

16 tuner = hydro.Tuner(trainer, search_space, scaling_num=8)

17 results = tuner.fit()

Figure 5: A code example of how to use Hydro APIs to define
the search space and perform hyperparameter tuning.

scheduler to dynamically allocate resources and execute tri-
als (❷). It supports two novel mechanisms, which leverage
ephemeral bubbles and heterogeneous resources to further
improve datacenter efficiency. Finally, the tuning job is suc-
cessfully scheduled and starts running, where Ray [84] and
PyTorch [91] serve as the execution backend (❸). More de-
tails are introduced in the following sections (§4 & §5).

4 Hydro Tuner
Hydro Tuner is a core component of the Hydro service for
job-level optimization. It consists of three modules: Model
Shrinker, Trial Binder and Trial Planner.

4.1 Model Shrinker
Model Shrinker aims to obtain surrogate models by automati-
cally tracing, scaling and parametrizing the target model. The
upper part of Figure 6 depicts its workflow. It first traces
the target model and edits each layer’s configuration to build
a scaled model (①). To enable hyperparameter transfer, it
then automatically parametrizes the scaled model by reini-
tializing the weight and adjusting the learning rate of each
layer accordingly (②). Below we first summarize the MU
parametrization theory that Hydro parametrization relies on,
and then introduce how Hydro brings it into practice.
Maximal Update parametrization. As introduced in §2.2,
Hydro employs the MU parametrization theory [117, 121] to
search hyperparameters on a small surrogate model and trans-
fer them to the large target model. The theory is built atop
Tensor Programs [117–122], a unified theoretical framework
that formulates the computation of common neural networks
components as Gaussian Processes (GPs), including multi-
layer perceptrons (MLPs), recurrent neural networks (RNNs)
(e.g., Long-Short Term Memory (LSTM) [21]), skip connec-
tions [41], convolutions [62] or graph convolutions [55], pool-
ing [62], batch normalization [48], layer normalization [20],
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and attention [108]. As a result, many practical models like
ResNet [41] and Transformer [108] can be expressed as GPs
and apply MU parametrization, since they inherently consist
of these basic components.

➤ Theory assumption. In contrast to prior works such
as NTK [49] that necessitate unnatural conditions, MU
parametrization only requires standard Gaussian initializa-
tion for the model, which is easily achievable in practice. In
terms of data, MU parametrization requires i.i.d. samples,
which is typically present in the same dataset. However, this
requirement also limits its ability to support fine-tuning (§7).

➤ Key insight and mechanism. The main idea of MU
parametrization is: every activation vector has roughly i.i.d.
coordinates at any time during training neural networks in
the infinite-width limit. It aims to overcome the imbalanced
per-layer learning speed issue in practice. To this end, MU
parametrization performs layer-wise fine-grained adjustment,
including per-layer initialization variance, learning rate and
other optimizer-related hyperparameters (e.g., SGD momen-
tum, Adam beta). Specifically, since the output layer is up-
dated much faster than the input layer, MU parametrization
suppresses the learning rate and initialization variance of out-
put weights by w (width) times. In addition, for SGD-like
optimizers (linear tensor update), the learning rate of input
weights and all biases is multiplied by w. For Adam-like op-
timizers (non-linear tensor update, normalizes the gradient
coordinate-wise), the learning rate of hidden weights is di-
vided by w. Hence, MU parametrization ensures consistent
magnitude updates for each layer during training regardless
of its width so that hyperparameters can be transferred across
models with different widths at any time (i.e., same converge
speed across scaled models).

To summarize, in the large width limit, MU parametrization
reveals that hyperparameters yielding lower training losses for
narrower models also result in better performance for wider
models through a specific transfer mechanism. Hydro lever-
ages this effect to obtain better test accuracy efficiently via
surrogate-based tuning, albeit without a rigorous theoretical
guarantee for every model.

➤ Instructive example. To provide a clearer explanation of
why parametrization is necessary and how it operates, we reca-
pitulate the key insights of [121] with an instructive example
[117]. Consider a 1-hidden-layer linear model f (x) =V⊤Ux
with scalar inputs and outputs, as well as w-width layer
weights V,U ∈ Rw×1. In common practice (e.g., Xavier ini-
tialization [37]), we initialize them with V ∼N (0,1/w) and
U ∼ N (0,1), which ensures f (x) = Θ(|x|) at initialization
(Θ(·) indicates asymptotically tight bound). After one step of
SGD with learning rate 1, the new weights are V ′←V +θU
and U ′ ←U + θV , where θ is some scalar of size Θ(1) de-
pending on the inputs, labels, and loss function. Then

f (x) =V ′⊤U ′x

=
(

V⊤U +θU⊤U +θV⊤V +θ
2U⊤V

)
x

(2)

which will blow up with width w in the infinite limit because
U⊤U = Θ(w) by Law of Large Numbers. In other word, it
only allows O(1/w) learning rate so as to avoid float overflow,
and yield kernel limits (§2.2). Consequently, it fails to perform
feature learning (learning rate→ 0) to update weights after
random initialization.

However, by applying maximal update parametrization, we
have V ∼ N

(
0,1/w2

)
, U ∼ N (0,1), learning rates ηV =

1/w and ηU = w. After one step of SGD, now we have

f (x) =
(

V⊤U +θw−1U⊤U +θwV⊤V +θ
2U⊤V

)
x (3)

and one can verify this is Θ(1) and remains bounded. In
contrast to common practice, MU parametrization has Θ(1)
learning rate and admits feature learning maximally, which
allows every parameter to be updated maximally (in terms of
scaling with width) without leading to float overflow.

➤ Heuristic adaptation. While Tensor Programs support
more versatile model components (e.g., convolution), obtain-
ing a closed-form solution for arbitrary models is infeasible.
The efficacy of the MU parametrization has been rigorously
demonstrated on a 2-hidden-layer MLP trained with SGD
for multiple steps, and the proof can be readily extended to
deeper MLPs [121]. For more general models in practice,
some heuristic tricks are adopted to enhance their hyperpa-
rameter transferability. For example, Transformer [108] mod-
els require two additional operations in the self-attention: (1)
scaling the attention logit by 1/dk rather than 1/

√
dk, where

dk is the attention head size; (2) zero initialization on query
layer q. We also empirically find that using a larger sequence
length provides a better transfer effect for Transformer mod-
els. For models with some special components or architecture
(e.g., MoE [101]), hyperparameters may not well transfer with
MU parametrization alone. Hence, additional analysis and
tailored adjustments may be required.
Hydro parametrization. It is arduous and error-prone to
implement MU parametrization manually to generate a surro-
gate model. Developers are required to not only thoroughly
understand the MU parametrization theory, but also manually
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Figure 7: Hydro parametrization implementation. Illustration
on a simple 4-layer model with SGD or Adam-like optimizer.

adjust the model width, initialization function and learning
rate layer by layer. Any incorrect adjustment may directly
incur hyperparameter transfer failures. To this end, we im-
plement Hydro parametrization, an automated and simplified
parametrization strategy based on MU parametrization. We
demonstrate the excellent effect of Hydro parametrization
with visualized results in Figures 1 and 10.

For a clearer illustration, we present the Hydro parametriza-
tion process in Figure 7, which applies different strategies to
the input, hidden and output layers. Developers only need to
specify their desired scaling ratio S (S= 8 by default) and then
Hydro will parametrize the model accordingly. Concretely, at
the model initialization stage, we apply zero-variance initial-
ization to the output layer instead of 1/w2, which will not be
detrimental to performance and can remove this mismatch is-
sue between the surrogate model and target model in the initial
Gaussian process [117]. Moreover, we apply zero initializa-
tion to all biases, and weights as well as learning rate scaling
strategies are annotated in the figure, which is invoked by
the prepare_optimizer API to build a hydro_optimizer.
Besides, we insert a Multiply layer in front of the output
layer to scale its input by S.

Applicable Scope: Hydro parametrization works well for
most ubiquitous hyperparameters that control model ini-
tialization and training, including learning rate, batchsize,
lr_scheduler, momentum, etc. However, it has limited support
on regularization-related hyperparameters, such as weight de-
cay and dropout, because they naturally depend on both the
model size and data size. Although parametrization cannot
be applied to all hyperparameters, it is sufficient to achieve
qualified performance in most cases. After most hyperpa-
rameters are tuned with the surrogate model, developers can
further tune the regularization hyperparameters within a much
smaller search space on the target model if needed. Moreover,
we provide a comprehensive summary of additional limita-
tions associated with Hydro parametrization in Section 7.
Trace and scale. Before performing the above parametriza-
tion, we need to first trace the target model and build a scaled
model. Since there are various model definition styles in the
PyTorch ecosystem, it is necessary to obtain a uniform and
equivalent modality from disparate community model codes.
We implement HydroTracer based on torch.fx [97], which

allows developers to trace and edit the model. Specifically,
we replace call_function nodes (e.g., torch.nn.functional )
with the corresponding call_module nodes (e.g., torch.nn)
for subsequent layer scaling and fusion (§4.2). We apply dif-
ferent scaling rules to the input, output and hidden layers.
For instance, we parse nn.Linear kwargs and modify both
the in_features and out_features values by dividing S for hid-
den layers. In addition, we only scale the out_features of
input and in_features value of output layers. To handle the
data-dependent control-flow, we use proxy nodes along with
developer-provided concrete values to determine the execu-
tion flow [61]. According to our evaluation of notable models,
including TorchVision [18] (e.g., ResNet [41], MobileNet
[44], VGG [103]) and HuggingFace Transformers [113] (e.g.,
BERT [30], GPT [95], Swin [76]), developers can trace and
scale these models with Hydro without modifying the code.
Correctness check. While Hydro has achieved automatic
parameterization, there are still potential failures due to cer-
tain special model components that require heuristic adapta-
tion as previously mentioned, as well as other corner cases
that have not been considered. To this end, we further im-
plement a safeguard mechanism to check the correctness of
the parametrization and notify users whether they should use
Hydro to prevent misleading hyperparameters and resource
wastage. Firstly, Hydro performs a simple per-layer width
check when scaling to avoid too narrow layers (e.g., only 1
neuron width for a Linear layer). Additionally, taking inspira-
tion from gradient checking as a simple method for verifying
the correctness of an autograd implementation, Hydro has a
quick parameterization profiling stage that checks whether the
average size (L1 value) of each activation vector is bounded
to avoid possible parameterization failure based on [117]. It
only lasts for very few steps at the beginning of the HPO job.

4.2 Trial Binder
Although Model Shrinker dramatically reduces the computa-
tion of each trial (Figure 3), it inevitably incurs the resource
underutilization issue, which deteriorates small- or mid-size
target models (e.g., deployed on edge devices). To address
this problem, Trial Binder further optimizes surrogate mod-
els by binding multiple trials and fuses internal operators
to better utilize accelerators. We illustrate its mechanism in
the bottom part of Figure 6. It merges a set of fusible trials
into a HydroTrial with grouped operators and optimizer (③).
To further accelerate training, we automatically just-in-time
(JIT) compile the fused (inter-) surrogate model to obtain
fast and flexible fusion (intra-) kernels (④). Note that the
last model with closer layer distance represents the reduced
memory-bounded operations through intra-trial fusion.
Inter-trial fusion. There are plenty of trials with the same
or similar model structure in a HPO job. Inspired by JAX
vmap [35, 112], which returns a batched version of the target
function by vectorizing each input along the axis specified, we
can batch multiple trials into a single one by fusing their opera-



Fusion 
Memory
V2

Framework
Input Data
Model States

MPS Fusion Only Hydro

1

5

…

1

5

…

1

5…

(c)

Figure 8: Inter-trial fusion effect on ResNet-18. (a) Accu-
mulated throughout of fused surrogate model w.r.t the target
model. (b) GPU memory footprint of different fusion counts.
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tors. Hydro implements an inter-trial fusion mechanism to au-
tomatically bind surrogate models. Specifically, Trial Binder
traverses the traced surrogate model and replaces the torch.nn
operators with grouped hydro.nn operators according to
the predefined fusion rule and fusion count F determined
by Trial Planner. hydro.nn provides mathematically equiva-
lent implementations of batched original PyTorch operators
based on HFTA [110]. For instance, hydro.nn.Linear is
implemented atop torch.baddbmm (i.e., batch matrix-matrix
product and add), which adds an additional dimension batch
(i.e., F) compared with torch.nn.Linear (addmm). Besides,
for each hydro.nn operator, we reimplement the initializa-
tion function to support independent model-wise Hydro
parametrization and realize the defusion mechanism to ex-
tract a specific sub-model. Additionally, hydro_optimizer
and hydro_lr_scheduler are designed to support both the
model fusion and parametrization simultaneously. These are
performed automatically, and developers typically do not need
to understand the rationale and modify codes.

Figure 8 plots the extraordinary effect of integrating model
scaling with inter-trial fusion on ResNet-18 (S = 8), tested
on CIFAR-10 with batchsize=256. It is evident that Hydro
is capable of concurrently training impressive 676 models
on a single A100 GPU. Compared with the conventional
GPU sharing mechanism MPS [13] (MIG [12] has similar
performance), Hydro achieves over 10× training throughput
improvement and over 20× GPU memory conservation. If
we directly apply inter-trial fusion to the target model (with-
out scaling), the throughput improvement is relatively much
limited. Furthermore, we provide an intuitive interpretation

of how memory footprint reduction occurs in Figure 8 (c).
The model states (blue blocks) encompass all aspects asso-
ciated with model training such as model weights, gradients,
activations, and optimizer states [96]. MPS has repetitive
memory overheads incurred by CUDA context of DL frame-
work (purple blocks) and independent data loading (pink
blocks). In contrast, Hydro avoid such redundancy and further
reduce model-related memory footprint. Note that here we
only compare with vanilla training paradigm without consid-
ering more advanced memory optimization techniques like
Salus [124]. Moreover, beyond the better GPU utilization and
higher throughput, inter-trial fusion also alleviates the I/O
pressure owing to the accompanied data-loading fusion.
Lazy intra-trial fusion. Hydro supports automatic model
fusion to further accelerate training based on the nvFuser
[10] compiler backend. Although plenty of previous works
[51, 107, 129] demonstrate that operator fusion can improve
training throughput via better memory locality, it does not al-
ways bring benefits to HPO workloads due to its high compil-
ing overhead. For instance, nvFuser [10] takes approximately
2-epoch time to compile a ResNet-18 model to deliver around
10% speedup per epoch, which means a trial needs to run at
least 20 epochs to avoid slowdown. However, most trials will
end up in a few epochs for multi-fidelity tuning algorithms.
To this end, Hydro apathetically adopts the intra-trial fusion.
For simplicity, Hydro currently only applies to trials with
deterministic training steps, such as all HydroTrials when
applying single-fidelity tuning algorithms and the trial that
trains the target model with transferred hyperparameters.

4.3 Trial Planner
Trial Planner is the key module that interacts with the tuning
algorithm and trial executor. We introduce two mechanisms
that improve the surrogate-based tuning efficiency.
Adaptive fusion. The trial count and resource amount vary
significantly across different HPO jobs. Hence, the fusion
count F of each HydroTrial should be adaptively determined
to achieve the desired performance. Hydro contains the fol-
lowing steps to fuse trials and assign GPUs: (1) Trial Planner
invokes the tuning algorithm to generate a set of hyperparam-
eter configurations (trials). (2) Since inter-trial fusion requires
trials with the same operator shapes, we split them into differ-
ent trial groups according to their batchsizes. (3) Based on the
linear growth of GPU memory shown in Figure 8 (b), we can
profile the trials with F = 1 and F = 2 for each trial group
and estimate the upper bound of the fusion count Fmax. (4)
Hydro assigns all available GPUs to each trial group accord-
ing to group’s weight, which equals to B×N (denoted as the
product of batchsize and trial count of the group). (5) Each
trial group evenly distributes trials based on the group GPU
amount and Fmax, and Hydro fuses them as a HydroTrial on
each GPU. In this way, Hydro can leverage as many GPUs as
possible and achieve the optimal global throughput.
Eager transfer. As the HPO job progresses, more and more



1 2 3 4 1 2 3 4 5 6 7 8

1 2 3 1 4 2 3 4 5 6 7

1 2 1 3 2 4 3 4 5 6

1 1 2 2 3 3 4 4 5 5

W1

W2

W3

W4

1 2 3 4 5

(a) 1F1B (Most Popular Pipeline Schedule)

1 2 3 4 Trial 1 1 2 3 4 5 6 7 8 T1

1 2 3 Trial 2 1 4 2 3 4 T2 5 6 7 T2

1 2 T3 1 3 2 4 3 4 Trial 3 5 6 T3

1 1 2 2 3 3 4 4 Trial 4 5 5

W1

W2

W3

W4

Memory

1 2 3 4 5

(b) Hydro Trials Interleave with 1F1B Workload

Memory

Forward
Pass

Backward
Pass

Bubble
Model & Framework
Memory

Activation 
Memory

Hydro
Trial

Hydro
Memory

Resume

Resume Pause

FlushPause

Flush

Figure 9: Illustration of (a) 1F1B Pipeline and (b) Hydro
Bubble Squeezer, with four pipeline stages and four micro-
batches. Note the right-side memory diagrams can only reflect
the relative relation of the same color blocks across workers.

trials terminate and the degree of the parallelism gradually
decreases, resulting in underutilized or idle resources. On
the other hand, the best hyperparameter configuration some-
times appears in the early stage. Therefore, instead of training
the target model after all the surrogate-based tuning trials
are done, we can eagerly transfer the intermediate best hy-
perparameters and leverage vacated resources to validate the
configuration on the target model. Hydro records all evaluated
hyperparameters and schedules a TargetTrial for the target
model training when 50% (customizable) of the surrogate-
based tuning trials are done and there exist idle resources.
If a better hyperparameter is searched, Hydro terminates the
on-going TargetTrial or starts a new TargetTrial depending on
the resource utilization. This mechanism efficiently shortens
the job makespan and improves the resource utilization.

5 Hydro Coordinator
Hydro Coordinator focuses on cluster-level optimization. It
consists of three modules: Bubble Squeezer, Heterogeneity-
Aware Allocator and Elastic Executor. It is important to high-
light that the first two modules are tailored for specific cluster
scenarios. Specifically, Bubble Squeezer can only be acti-
vated when a pipeline-enabled foundation model pretraining
job is running within the cluster. The Heterogeneity-Aware
Allocator is meticulously designed to better leverage multiple
generations of GPUs coexisting in the cluster.

5.1 Bubble Squeezer
In addition to HPO jobs, there are many kinds of workloads
that coexist in the GPU datacenter, such as inference, debug-
ging and large-scale distributed training jobs [45, 50, 111].
With the rapid popularity of foundation models (e.g., GPT-
3 [24]) in recent years, some large model pretraining work-
loads exist in our datacenter in the long term. As complained
by many users, the majority of machines are occupied by
large model training jobs that usually last for days to weeks,

which incurs the starvation of other jobs. Additionally, the
pipeline parallelism [85, 88] is usually adopted to support a
larger model by splitting it into several stages and placing
them across multiple workers. However, bubbles inherently
exist in the synchronous pipeline parallelism [106], such as
the commonly used 1F1B [34,86] strategy. Besides, the imbal-
ance peak memory issue (Figure 9) between different pipeline
stages further exacerbates the resource inefficiency [65].

Hydro designs Bubble Squeezer, which leverages bubbles
to greatly extend the tuning job resources in an interleaving
execution way, almost without hurting the training throughout
of large models. HydroTrials are perfectly suitable for the
bubble interleaving execution due to the following unique fea-
tures: (1) Throughput insensitivity. Unlike general DL training
jobs, tuning jobs are more tolerant of the slowdown of partial
trials. This inspires us to squeeze the spare resources of the
bubbles and execute trials in a pause-and-resume way. (2) De-
terministic resource pattern. General small-scale workloads
(e.g., debugging) have unknown and unpredictable resource
requirements. However, Hydro profiles and records the re-
source consumption of HydroTrials, mitigating the potential
out-of-memory (OOM) issues if they are colocated with large
models. (3) Elastic trial size. Based on Model Shrinker, the
scaled model has a much smaller memory footprint (Figure
3) than the original model, which means we typically do not
need to swap out its GPU memory during colocation. Besides,
we can dynamically adjust the trial fusion count according to
the remaining GPU memory with Trial Binder.

To clearly illustrate how Bubble Squeezer works, we first
introduce the 1F1B pipeline parallelism in Figure 9 (a). It
transfers intermediate activations of the partial model at the
forward and backward passes between different workers using
point-to-point communication [130], thus each worker cannot
continuously utilize the GPU. For Worker 1, after the forward
pass of the last micro-batch (blue block 4), it has to wait for
the backward pass of the first micro-batch (green block 1),
leaving GPU idle for a long time. Other workers also present
similar bubble patterns but occupy less GPU memory since
fewer activations of micro-batch needed to store.

In Figure 9 (b), Hydro interleaves four HydroTrials of
different sizes with the large model training workload. Each
trial executes in a pause-and-resume paradigm to squeeze the
bubbles. Since Hydro Tuner has traced and canonicated each
layer with hydro.nn, we further register hooks on each mod-
ule of the trial to support on-demand pause and resumption in
the forward and backward passes of each layer. When a large
model training job exists, Hydro coordinates with datacenter
scheduler to acquire more GPUs from this model and tags
them as ephemeral resources. For the large model, we also im-
plement a corresponding hook inside its training framework
(i.e., DeepSpeed [96]) to report its training progress and re-
source consumption. Each worker executes its corresponding
pipeline under DeepSpeed’s pipeline parallelism. Therefore,
we implement a fine-grained synchronization mechanism to



guarantee that HydroTrials only could be executed within
the bubbles, by intercepting the status of the CUDA streams
of the NCCL kernels. Hydro can further adjust the fusion
count to adaptively fit in the remaining memory and improve
GPU utilization. At the beginning and end of the bubble of
large model training, we control the resumption and pause
of trial model training by Linux signals. The fine-grained
suspend-resume control eliminates the performance interfer-
ence caused by CUDA kernels running simultaneously.

In general, the effectiveness of Bubble Squeezer varies de-
pending on multiple factors, and we present the scenarios
where it works best. Regarding the HPO job aspect, Hydro
is more effective when using (1) multi-fidelity tuning algo-
rithms because they allow most trials to be terminated in a few
epochs using the ephemeral resources and execute immediate
top trials on exclusive resources to avoid possible blocking
caused by interleaving slowdown. In addition, (2) models with
fewer layers are preferred as they are prone to complete the en-
tire iteration within the bubble time and require relatively less
memory to support a higher fusion number. As for pipelined
large model aspect, Hydro can achieve better performance
when the pretraining job has (3) more pipeline stages across
more servers, which implies a higher bubble ratio and more
ephemeral resources. A large model pretraining job typically
can support multiple different HPO jobs interleaving simulta-
neously and accelerate dozens, even hundreds of HPO jobs
(depending on its resources and duration scale) during its
pretraining process. In addition, there may be cases where
some scaled models are still too large to be allocated on any
GPU of the pretraining model. Due to the high memory swap
overhead in our scenario, Hydro does not support offloading
techniques like Bamboo [106]. As a result, Bubble Squeezer
is unable to support such models.

5.2 Heterogeneity-Aware Allocator
HPO workloads generally have diminishing resource require-
ments [71]. They usually explore plenty of trials at the begin-
ning and gradually decrease the search concurrency. At the
final stage, only a few trials are exploited. Hence, tuning with
fixed GPU resources can lead to underutilization. Existing
HPO systems [32, 82] support autoscaling to dynamically ad-
just the tuning resources. However, they do not consider the
GPU heterogeneity in the datacenter.

Inspired by Gavel [87], a novel heterogeneity-aware cluster
scheduler for general DL jobs, we design a resource allocator
to allocate appropriate GPUs to trials, which can improve the
cluster-wide efficiency without sacrificing the job makespan.
Hydro supports both resource autoscaling and heterogeneity-
aware allocation. Specifically, if there is any node or GPU idle
for over 1 minute (customizable), Hydro will interact with
the cluster scheduler to release the resource. Other affiliated
resources like CPU will also be released as a bundle. Ad-
ditionally, Hydro creates TargetTrial with the eager transfer
mechanism and makes the target model training process well

hidden inside the tuning time. Since the TargetTrial typically
trains alone without fusion, it may not be able to fully utilize
the GPU resources. So Hydro will place it on an GPU of
old version (e.g., V100) if its SM Activity rate (measured
by NVIDIA DCGM [11]) is lower than 50% (customizable).
Similar action will be applied to surrogate models if their al-
located resources are underutilized and there exist other HPO
jobs pending in our service queue.

5.3 Elastic Executor
Elastic Executor is designed to improve the job efficiency by
leveraging all assigned GPU resources. It supports two elastic
mechanisms: (1) dynamic split and (2) automated distributed
training. Specifically, when an idle GPU emerges, the fused
HydroTrial will not directly increase its GPU count by con-
ventional distributed training. Instead, Hydro will evenly split
this HydroTrial into multiple HydroTrials and exclusively
place them on the idle GPUs to reduce the communication
overhead. Furthermore, since the memory footprint of some
large models is high even though scaled, Hydro supports two
types of elastic strategies for unfused surrogate models: (a)
Evenly distribute: allocating idle GPU resources to all unfused
surrogate models evenly. (b) Performance-aware (default):
allocating idle GPU resources to the top performing trial. For
the target model, Hydro automatically increases the number
of workers to enable distributed training.

6 Evaluation
Hydro is implemented on top of Ray [72, 84] with about 12K
LoC. For Hydro Tuner, Model Shrinker relies on torch.fx [97]
and mup [117], while Trial Binder is built with HFTA [110]
and nvFuser [10]. As for Hydro Coordinator, we modify Deep-
Speed [96] to further support Bubble Squeezer and validate
the interleaving execution as a prototype. And the Elastic
Executor based on Ray Train as well as PyTorch FSDP [17].

We evaluate Hydro Tuner and Hydro Coordinator indepen-
dently for a fair comparison. Our experiment search space
does not include weight decay because Hydro is unable to
transfer regularization hyperparameters, but it is sufficient to
achieve qualified performance without tuning it.

6.1 Experiment Setup
Testbed. We conduct our experiments on a GPU datacenter
of Shanghai AI Laboratory. Each node has 8 NVIDIA A100
80GB GPUs, 2 AMD EPYC 7742 CPUs (128 cores) [2]
and 1TB memory. GPUs are interconnected to each other by
NVLink and NVSwitch [14], and inter-node communication
is achieved via NVIDIA Mellanox 200Gbps HDR InfiniBand
[7]. All the experiments are conducted on A100 GPUs, unless
explicitly stated in §6.5.
Workloads and search spaces. We evaluate Hydro tuning
performance over six popular CV/NLP models, as listed in
Table 2. Specifically, GPT-3 XL is a large language model
architecture belonging to GPT-3 family. It contains 1.3B pa-
rameters and we use an open source implementation by GPT-



Task Search Space Model Dataset Optimizer # of GPU # of Trial
Avg. Time
Reduction

Avg. Quality
Difference

Size

GPT-3 XL [24] OpenWebText [38] AdamW 128 100 78.5 × −0.48 ppl XL∗Language
Modeling

lr: UQ log(10−5, 10−1, 10−5)
gamma: UQ(0.01, 0.9, 0.01) Transformer [108] WikiText-103 [81] Adam 8 200 8.7 × −0.15 ppl M

WideResNet-50 [126] ImageNet [29] SGD 32 200 20.3 × +1.18% acc XL∗

MobileNetV3 Large [44] Flowers102 [90] Adam 16 500 12.3 × +0.05% acc L

VGG-11 [103] CIFAR-100 [57] SGD 8 500 10.8 × +0.09% acc M

Image
Classification

lr: UQ log(10−4, 1.0, 10−4)
momentum: UQ(0.5, 0.999, 10−3)
batchsize: [128, 256, 512]
gamma: UQ(0.01, 0.9, 0.01)

ResNet-18 [41] CIFAR-10 [57] SGD 8 1000 16.2 × +0.02% acc M

Table 2: Summary of (1) workloads used in the evaluation and (2) single-fidelity tuning improvements over Ray. Model Quality:
ppl indicates perplexity (the lower the better) and acc denotes accuracy (the higher the better). ∗ For XL tasks, we estimate the
time cost of Ray based on simulation and use the official hyperparameter setting as the model quality baseline.
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Figure 10: Hydro Tuner mechanisms validation. (a)∼(d) Scaling validation: randomly select 10 hyperparameter sets ([batchsize,
lr, momentum]) to visualize the transfer effect of multi-dimensional hyperparameters across different scaling ratios S = 1,2,4,8
on model ResNet-18. (e) Fusion validation: loss curves of the standard model (solid line) and inter-trial fused model (dash line).

Neo [5, 23]. We further enable mixed precision training for
WideResNet-50 and two language modeling tasks. For the
dataset, we crop Flowers102 into 224×224 images, whose
input size is the same as ImageNet. And we swap its train and
test dataset split to get a larger training dataset to make it sim-
ilar to more general jobs. Moreover, we denote single-node
tasks as M-size, and distributed tuning tasks as L/XL-size.

We adopt three kinds of optimizers for above models, in-
cluding SGD [99], Adam [54], and AdamW [77]. We use
StepLR to decay the learning rate (lr) of each parameter
group by gamma at every fixed step for all tasks. Additionally,
we design two groups of search spaces for CV and NLP tasks
respectively (Table 2), where UQ(lower,upper,q) represents
uniformly sampling a quantized (increment of q) float value
between lower and upper. Similarly, UQ log uniformly sam-
ples in different orders of magnitude. Note that the search
space of MobileNetV3 Large excludes momentum due to the
incompatibility of Adam.

Tuning algorithms. Hydro supports multiple popular single-
fidelity and multi-fidelity tuning algorithms, such as Random
[22], HyperBand [64], ASHA [63]. Since our work focuses
on system aspect optimization instead of tuning algorithms,
we select two representative tuning algorithms in our evalu-
ation: (1) Random (single-fidelity): fully evaluates each ran-
domly generated trial; (2) ASHA (multi-fidelity): eliminates

unpromising trials via asynchronous successive halving strat-
egy. They are common hyperparameter tuning paradigms in
practice. Besides, their asynchronous and prior-independent
nature makes them more suitable for large-scale distributed
tuning with numerous trials [71].
Baselines. We consider the following two systems as baseline:
(1) Ray [72, 84]: performs HPO with the vanilla Ray Tune
library; (2) Ray+ES: applies two advanced techniques in Ray
Tune (Elastic training and GPU Sharing). Our implementa-
tion of Ray+ES refers to HyperSched [71] and Fluid [125].
Specifically, we place multiple trials on the same GPU us-
ing NVIDIA MPS [13] and allocate more GPU resources to
the top performing trials if idle GPUs are available. We do
not employ A100 MIG [12] sharing due to its similar perfor-
mance with MPS but less flexibility [110]. Additionally, since
existing popular HPO systems (Table 1) mainly differ in the
application scenario and API design, and their system perfor-
mance on the same tuning algorithm is similar, the Ray-based
systems are sufficient for representing SOTA.

6.2 Surrogate-based Tuning Validation
Before performing end-to-end evaluations, we first give an
intuitive experiment to validate the effect of surrogate-based
tuning, which is the foundation of Hydro. As shown in Figure
10 (a)∼(d), we randomly choose 10 hyperparameter configu-
rations (denoted as A∼J) on the ResNet-18 model and build



Model # of GPU # of Trial
Avg. Time

Improvement
Avg. Quality
Difference

GPT-3 XL 64 100 33.4 × −0.43 ppl

Transformer 4 200 5.8 × −0.09 ppl

WideResNet-50 16 200 9.7 × +0.87% acc

MobileNetV3 Large 8 500 8.0 × +0.08% acc

VGG-11 4 500 9.4 × +0.19% acc

ResNet-18 4 1000 14.5 × +0.05% acc

Table 3: Summary of multi-fidelity tuning improvements.

Deadline (s) # of GPU Model
Avg. Accuracy

Ray Ray+ES Hydro

900 4
VGG-11 65.42% 66.39% 68.68%

ResNet-18 89.66% 90.71% 91.32%

Table 4: Summary of tuning performance with a deadline.

surrogate models with Hydro using different scaling ratios
S = 2,4,8, where S = 1 represents the target model. We train
each model for 100 epochs on the CIFAR-10 dataset with
a fixed seed=1. Since the HPO job is essentially a ranking
problem of hyperparameter configurations, we mainly care
about whether the order is maintained especially for the top
configurations, namely hyperparameter transfer effect. From
the result, it is obvious that the performance ranking of hy-
perparameters transfers well across different scaling ratios.
Admittedly, configurations G and H are swapped when S≥ 4,
but it has no influence on the final tuning result since they per-
form poorly and top configurations keep a consistent ranking.
Besides, the wider model always outperforms the narrower
one under the same hyperparameters, which is inline with MU
parametrization theory and demonstrates that surrogate model
can effectively transfer multi-dimensional hyperparameters.

Additionally, we also validate the inter-trial fusion effect,
which is another key mechanism of Hydro. Figure 10 (e)
shows the training loss curves of trials C, E, H and their fused
versions. We select these three trials because their batchsize
and momentum are consistent and only differ in lr. As we can
see, the convergence curves of the fused model well overlap
with the original standalone training curves, which demon-
strates that inter-trial fusion is a mathematically equivalent
transformation and does not affect the model convergence.

6.3 End-to-End Performance of Hydro Tuner
To cover most hyperparameter tuning scenarios in practice, we
conduct end-to-end experiments across 6 workloads with dif-
ferent settings and 3 common tuning paradigms (case I∼III).
Note that Hydro Tuner adopts a fixed resource size (without
enabling Hydro Coordinator) for fair comparisons.
Case I: single-fidelity tuning. When a user seeks for ex-
tremely excellent model performance with ample resources,
single-fidelity tuning is applied to avoid missing the best hy-
perparameter configuration. Table 2 summarizes the Hydro
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Figure 11: Summary of the end-to-end results. Bars indicate
tuning makespan and points represent final model accuracy.

improvement on single-fidelity tuning over different sizes of
workloads, where we apply S = 16 for XL models and S = 8
(default value) for other models. Since HPO jobs require com-
pletely training massive trials, we perform each experiment
twice and report their average results on time reduction and
tuned model quality over Ray. Besides, we obtain Ray tuning
time of XL experiments based on simulation due to their un-
acceptable tuning cost, and adopt the official hyperparameter
configurations [16, 24] to train the model as quality baselines.
The target model training time is included in Hydro.

From the table, we can see that Hydro substantially outper-
forms Ray by 8.7∼78.5× in time reduction, while obtaining
better final model quality. The time reduction mainly derives
from two aspects: (1) Less resource demand of trials. For
instance, the scaled GPT-3 XL trials do not require distributed
training. For smaller models, Hydro further applies inter-trial
fusion to improve trial concurrency and resource utilization.
(2) Smaller model trains faster. Each trial has fewer FLOPs
(Figure 3) to compute, which is more obvious on larger mod-
els. Additionally, we also observe that the effect of Hydro
is more evident for larger models, with more intensive trials
and fewer resources. This reflects Hydro is more suitable for
large-scale HPO jobs with limited resources, which is hard to
handle by existing systems.
Case II: multi-fidelity tuning. When a user desires to obtain
a good model with a relatively lower cost, multi-fidelity tun-
ing is applied to search hyperparameters efficiently. Table 3
reports the Hydro performance on multi-fidelity tuning. We
keep the same experiment settings as Case I, except using
half GPU resources. Besides, we configure ASHA [63] with
bracket = 1,grace = 3,reduction = 3. We observe that Hy-
dro can achieve 5.8∼33.4× reduction over Ray. Hydro can
further benefits ASHA due to its much higher concurrency,
which prevents the inaccurate promotion issue of ASHA [66].
Furthermore, we find that Hydro can also slightly improve
the final model quality, which is mainly due to the different
model initialization and more balanced layer-wise training
rate configuration by Hydro parametrization. The results are
also in line with Figure 1 that Hydro delivers a lower loss.
Case III: tuning with a deadline. When a user wants to
get a model as good as possible by a fixed deadline, budget-
bounded ASHA is applied. We simply evaluate two models
with a deadline of 15 minutes as shown in Table 4. Hydro
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outperforms other baselines in final model accuracy within a
limited time since it can well hide the target model training
time inside the surrogate model tuning with Eager Transfer.
End-to-end result visualization. Figure 11 summarizes the
makespan and accuracy of VGG-11 and ResNet-18 across
different tuning algorithms and baselines. We note that Ray
and Ray-ES share the same accuracy point since elastic and
GPU sharing have no effect on the final model quality. The
surrogate-based tuning (Hydro) can significantly reduce the
search makespan without sacrificing the model accuracy. Due
to the page limit, we only select these two models for presen-
tation because of their relatively obvious efficacy of Ray-ES.
Ray-ES has less improvement over Ray for larger models like
WideResNet-50, since it cannot benefit from GPU sharing
and the elastic improvement is limited (only for later stage).

6.4 More Evaluation on Hydro Tuner
Ablation study of fusion. Figure 12 (a) reveals an interest-
ing observation that Hydro can only achieve very limited
improvement over Ray if inter-trial fusion is disabled, even
though we have scaled the model by 8×. This is because
GPUs are underutilized for such small models and there is no
evident training speedup although we scale the model. Hence,
it is important to combine Model Shrinker and Trial Binder
to achieve the desired performance. Additionally, we also
evaluate the effect of intra-trial fusion. However, we find its
improvement is limited on small models.
Sensitivity analysis of scaling. Figure 13 clearly presents the
effect of the scaling ratio S on GPU memory and accumulated
fused trial throughput, where the normalization base is the
throughput of the target model. We find that the peak through-
put increases linearly alone with S. GPU memory also shows
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Figure 14: GPU utilization of HPO systems on ResNet-18.
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Figure 15: Visualizing Bubble Squeezer effect via DCGM.
Two iterations of the first pipe stage are presented. The execu-
tion periods of the HydroTrial are highlighted by red arrows.

a similar pattern. In Figure 12 (b), we further evaluate the
effect of the scaling ratio S on the overall tuning time. Hydro
can continuously obtain benefits from higher scaling ratios.
Besides, the final model accuracy maintains stable.
Sensitivity analysis of AMP. Figure 13 analyzes the effect
of mixed precision training (i.e., AMP [15]), where solid and
dashed lines represent the settings without and with AMP, re-
spectively. We can find that the peak throughput can be further
improved via enabling AMP. Besides, its effect on memory is
also obvious, improving nearly 2× maximum fusion count.
Impact on GPU utilization. Figure 14 plots the GPU uti-
lization traces on one GPU for 300 seconds using different
HPO systems. We employ NVIDIA DCGM [11] to record
SM Activity as GPU utilization. It is obvious that Hydro
can achieve much higher GPU utilization than other baselines
owing to the superior capability of inter-trail fusion [110].
Overhead analysis. We perform the overhead analysis on
the ResNet-18 multi-fidelity tuning workload. Its overhead
mainly derives from two aspects: (1) profiling accounts for
0.8%; (2) defusion (including trial restart) accounts for 3.3%.
The associated overhead is minor when weighed against the
substantial enhancements in the tuning efficiency of Hydro.

6.5 Hydro Coordinator Evaluation
Bubble Squeezer. To evaluate the impact of Bubble Squeezer,
we interleave HydroTrials with a large GPT model over 32
A100 GPUs containing 4 pipeline stages on 4 nodes, which
is implemented based on DeepSpeed [96] along with Mega-
tronLM [56, 88, 102]. We measured the SM activity with and
without Bubble Squeezer in Figure 15. Two traces are col-
lected separately and we align them at the beginning of the
figure. For the original GPT training, since the only active



kernel in the bubble is NCCL kernel for communication, the
SM activity is extremely poor (about 2%) during the bubble.
Hydro utilizes the unused SMs and achieves a relatively high
SM utilization at about 50%, with no evident slowdown to
the GPT model training. Here the HydroTrial is ResNet-18
model with fusion count F = 16, obtaining around 15% of ex-
clusive throughput. We also measure the throughput influence
of direct colocation and find it causes unacceptable interfer-
ence (about 12% slowdown for the large model). Additionally,
we further simulate the end-to-end performance of Bubble
Squeezer. Here we set that the Hydro tuning job can only
apply 1 exclusive GPU since most resources are occupied by
the large model. We find the makespan of the tuning job can
be greatly reduced by 2.7× with the free lunch.
Heterogeneity-Aware Allocator. We create a tiny cluster
partition with 2 A100 and 2 V100 nodes (32 GPUs in to-
tal) to evaluate the impact of Heterogeneity-Aware Alloca-
tor. Besides, we uniformly sample 20 middle-size HPO jobs
from Table 3 and randomly generate their job arrival time
within one hour. Compared to resource-agnostic allocation,
we find Heterogeneity-Aware Allocator achieves approxi-
mately a 1.3x reduction in the average job completion time.

7 Discussion
Limitations. Despite the extraordinary performance, Hydro’s
surrogate-based tuning paradigm does have three limitations:
(1) Hydro parametrization does not support regularization
hyperparameters, such as weight decay and dropout, as eluci-
dated in §4.1. (2) Hydro does not allow for any customized
initialization techniques because Hydro implements its own
automatic layer-wise re-initialization mechanism, which plays
a crucial role in parameterization. (3) Hydro does not sup-
port fine-tuning since its theory is built atop i.i.d. samples
(requiring the same dataset). Nevertheless, Hydro can deliver
qualified models for most cases.
Future work. In the future, we plan to improve our work in
following directions. (1) Supporting more DL frameworks
like TensorFlow [19] and JAX [35]. (2) Considering more re-
source dimensions like CPU and network bandwidth besides
GPU [83, 128], such as implementing the dataloader fusion
of trials to further alleviate I/O contention. (3) Expanding the
application scenarios such as cloud environments. It presents
an opportunity for dynamic selection of heterogeneous spot
instances, which can yield substantial cost savings [82, 106].
(4) Enabling partial model fusion across trails with minor
architectural differences (e.g., add/remove/modify a few lay-
ers/blocks). Furthermore, Hydro can integrate model match-
ing technique from ModelKeeper [60] to identify the models
with similar architectures across jobs from different users
and achieve cross-job level fusion, which can significantly
improve cluster efficiency.

8 Related Work
AutoML systems. Automated Machine Learning (AutoML)
refers to the process of automating the tasks associated with

optimizing ML model performance. In general, AutoML com-
prises two essential components: HPO and Neural Architec-
ture Search (NAS). NAS systems (e.g., Retiarii [127], Modu-
larNAS [74]) aim to discover the optimal model architecture
for a specific task. On the other hand, HPO focuses on opti-
mizing the hyperparameters of a fixed architecture, usually
separate from NAS. Our work primarily concentrates on HPO.

Prior HPO systems like HyperSched [71], Rubberband [82]
and Seer [32] support elastic training to allocate more GPU re-
sources to promising trials, which is also supported in Hydro.
Elastic training can make use of idle GPUs but fails to improve
single GPU utilization. On the other hand, Fluid [125] further
leverages NVIDIA MPS [13] technique to allocate multiple
trials on a single GPU. HFTA [110] achieves inter-trail fusion
on a shared accelerator. They can improve hardware utiliza-
tion but only work well on tiny models (e.g., AlexNet [58],
PointNet [93]). Based on the unique surrogate-base tuning na-
ture, Hydro significantly extends the fusion application scope
via model scaling and achieves automatic model fusion with
minimum manual effort.
Pipeline parallelism and interleaving execution. Recent
studies exploit bubbles induced by pipeline parallelism from
multiple angles. Bamboo [106] fills redundant computations
into bubbles to provide resilience and fast recovery for pre-
emptible cloud instances. EnvPipe [26] selectively lowers
the SM frequency of bubble periods to save energy. Unlike
them, Hydro leverages bubbles to train HPO trials via inter-
leaving execution, which is inspired by some prior works.
For instance, Wavelet [109] and Zico [73] reduce the GPU
peak memory based on interleaving. Muri [128] supports
multi-resource interleaving to reduce contention.

9 Conclusion
This paper presents Hydro, a surrogate-based hyperparameter
tuning service that provide job and cluster level optimization
via automated model scaling, fusion and interleaving. Our
experiments show that Hydro can dramatically reduce the
tuning makespan and improve the cluster resource utilization.
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