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Abstract—The growth of deep learning training (DLT) jobs in modern GPU clusters calls for efficient deep learning (DL) scheduler
designs. Due to the extensive applications of DL technology, developers may have different demands for their DLT jobs. It is important
for a GPU cluster to support all these demands and efficiently execute those DLT jobs. Unfortunately, existing DL schedulers mainly
focus on part of those demands, and cannot provide comprehensive scheduling services.
In this work, we present UNISCHED, a unified scheduler to optimize different types of scheduling objectives (e.g., guaranteeing the
deadlines of SLO jobs, minimizing the latency of best-effort jobs). Meanwhile, UNISCHED supports different job stopping criteria (e.g.,
iteration-based, performance-based). UniSched includes two key components: Estimator for estimating the job duration, and Selector
for selecting jobs and allocating resources. We perform large-scale simulations over the job traces from the production clusters.
Compared to state-of-the-art schedulers, UNISCHED can significantly decrease the deadline miss rate of SLO jobs by up to 6.84×, and
the latency of best-effort jobs by up to 4.02×, To demonstrate the practicality of UNISCHED, we implement and deploy a prototype on
Kubernetes in a physical cluster consisting of 64 GPUs.
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1 INTRODUCTION

T HE tremendous progress of deep learning (DL) technology
makes DL training (DLT) an indispensable workload in

research institutes and commercial cloud providers. Training a
production-level DL model usually demands huge efforts in terms
of time and GPU resources. Consequently, these companies and
institutes typically establish large-scale GPU clusters to satisfy the
intensive demands of DLT jobs from different users. A scheduler
is required to manage the execution of DLT jobs and allocate
resources to them.

As DL models are practically used in different scenarios
for different purposes, users can have distinct demands for the
scheduling and execution of their DLT jobs in the GPU cluster.
These demands can be categorized from two perspectives, as sum-
marized in Table 1. First, users may have different expectations for
the scheduling latency. In particular, some users hope their jobs
to be completed within specified deadlines. These jobs are mainly
for production development, DL competitions and challenges, and
research paper submissions. These jobs are referred to as Service
Level Objective (SLO) jobs. In contrast, other jobs are expected to
be completed as soon as possible without specific deadlines. We
call them best-effort jobs. Second, as DLT is an iterative process,
users may have different stopping criteria to complete the training
job. For instance, some users may specify the number of training
iterations for their jobs. Other users prefer to stop the training jobs
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when the models meet the desired performance indicated by some
metrics (e.g., accuracy, mAP, loss).

A shared GPU cluster can contain a mixture of the above jobs
with different demands. Then the question we aim to answer in
this paper is: how can we efficiently schedule those jobs and
satisfy both their scheduling latency requirement and stopping
criteria? Unfortunately, existing works mainly focus on certain
specific demands, and cannot cover all the types simultaneously.
Particularly, the majority of DL schedulers aim to reduce the
scheduling latency [1], [2], [3], [4], [5], [6] or maintain job
fairness [7], [8], [9], [10] for best-effort jobs. Thus they miss the
opportunities of guaranteeing the deadlines of SLO jobs.

To satisfy the deadline requirement of SLO jobs, prior stud-
ies propose deadline-aware schedulers for traditional big data
jobs [11], [12], [13], which could be extended to schedule DLT
workloads. However, these solutions do not consider the unique
features of DLT jobs, and cannot achieve optimal efficiency.
Recently researchers have proposed deadline-guaranteed schedul-
ing systems tailored for DLT jobs. GENIE [14] automatically
identifies the optimal resource allocation for SLO jobs. However, it
requires modifications of the underlying DL frameworks (e.g., ten-
sorflow [15]), and ignores the resource requirements from users.
HyperSched [16] aims to improve the performance of Hyper-
Parameter Optimization jobs, and cannot be directly adapted to
generic DLT jobs. Our recent work, CHRONUS [17], can satisfy
generic SLO and best-effort jobs simultaneously. However, it only
considers the iteration-based stopping criterion, while ignoring the
performance-based criterion. The main objective of Hydra [18] is
to meet the deadline while reducing the latency for SLO jobs in
a heterogeneous GPU cluster. However, it does not consider best-
effort jobs, and fails to support the performance-based criterion.

This paper presents UNISCHED, a novel scheduling system
that can satisfy all the scheduling latency demands and stopping
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criteria in a unified way. UNISCHED is improved over CHRONUS

[17]. For a mixture of different types of jobs in a shared GPU clus-
ter, UNISCHED is able to guarantee the SLO jobs’ deadlines, min-
imize best-effort jobs’ latency, and support both iteration-based
and performance-based stopping criteria. To achieve these goals,
UNISCHED needs to address three key challenges. First, the lack
of job runtime information misleads the job selection and resource
allocations of UNISCHED. Chronus is built upon the high intra-job
predictability of DLT jobs. Hence, it is feasible to mathematically
model the execution speed of distributed training jobs with any
resource allocations [6], [14], [19]. However, the runtime estimator
proposed in CHRONUS performs not satisfactorily for two reasons.
(1) The preemption overhead of DLT workloads will prolong the
job execution time. For example, the preemption overhead of GPT-
3 [20] can be up to several minutes. The unawareness of the
preemption overhead will increase the job runtime prediction error.
The inaccurate runtime estimation further misleads the scheduler
to make ineffective decisions. (2) CHRONUS cannot handle the
performance-based criteria jobs due to the lack of the number
of training iterations. To address this challenge, we propose
Estimator to improve the job runtime accuracy. Specifically,
we devise the sr-aware estimator to incorporate the preemption
overhead into the job runtime prediction. The core idea is to
use the statistical expected value of the preemption overhead. We
also design the training iteration estimator for performance-based
criteria jobs to estimate the number of training iterations needed
to reach the targeted performance. It uses a technique from [21]
to characterize the relationship between the number of training
iterations and performance metrics in an online manner and then
approximates the job duration.

Second, the mixture of profiler jobs, best-effort jobs, and SLO
jobs complicates the job scheduling. To date, Chronus is the only
DL scheduler that accounts for a mixture of best-effort and SLO
jobs. Profiler jobs are necessary for online profiling of job runtime,
as adopted in some works [6], [7], [19]. CHRONUS employs
resource reservation, shortest remaining time first, and mixed
integer linear programming (MILP) to handle these three job
types separately. However, these ad-hoc techniques increase the
scheduling complexity and miss joint optimization opportunities.
We propose to redesign the reward functions for different job
types, where the difference between jobs is represented by the
reward value over time. This transforms the scheduling of all job
types into an MILP optimization problem, alleviating the error-
prone ad-hoc design and simplifying the implementation.

Third, the execution speed of a distributed training job can
be affected by the GPU allocation topology. In other words,
training jobs are placement-sensitive and can achieve faster speed
on consolidated GPUs due to reduced local communication costs.
However, previous deadline-aware schedulers [11], [12], [13], [22]
only take into account the number of available resources, rather
than their topology. While CHRONUS considers the placement
sensitivity of SLO jobs and enforces the strict consolidation
placement through the round-up technique, it sacrifices the place-
ment efficiency of best-effort jobs. Existing DL schedulers for
deadline guarantee [16], [18] also do not provide efficient place-
ment strategies for best-effort jobs. UNISCHED relaxes the strict
consolidation placement constraint for SLO jobs and introduces
a novel approach for identifying appropriate resource allocations
for both best-effort and SLO jobs. This methodology, inspired
by Hived [4] allows for flexible resource allocations within the
MILP optimization framework. Unlike CHRONUS, which executes

TABLE 1: Categorization of DLT jobs in modern GPU clusters,
and their corresponding scheduling solutions.

Latency
Demands

Stopping
Criteria Iteration-based Performance-based

Service Level Objective [14], [17] [16], [25]

Best-Effort [1], [2], [3], [4], [5], [6]
[7], [8], [9], [10] [19], [26], [27]

job selection and resource allocation sequentially, UNISCHED

optimizes both processes simultaneously through a unified solver.
To evaluate UNISCHED, we perform large-scale simulations

on Helios [23] and Philly [2] traces from SenseTime and Microsoft
respectively. Evaluation results demonstrate that UNISCHED can
reduce up to 6.84× deadline miss rate. Compared with existing
deadline-aware schedulers, UNISCHED reduces up to 4.02× la-
tency of best-effort jobs. We further implement UNISCHED as a
custom scheduler with the Kubernetes system [24], and deploy
it on a physical cluster consisting of 64 GPUs. This cluster
supports various common DL models for computer vision and
natural language processing. Evaluations show that UNISCHED

can effectively guarantee SLO jobs’ deadlines and maintain best-
effort jobs’ execution latency. The contributions of this paper are:

• UNISCHED features the Estimator that can predict job
duration for various stopping criteria, including iteration-based
and performance-based ones.

• UNISCHED explicitly takes the overhead of suspension and
resumption into account when estimating the duration of jobs.

• UNISCHED unifies job profiling, scheduling, and resource
allocation into one MILP framework, and makes efficient joint
optimization to determine when and how to execute DLT jobs.

2 MOTIVATION

We discuss the categorization of DLT workloads in modern GPU
clusters, the importance of performance-based stopping criteria
jobs, and the advantages of joint optimization.

2.1 Categorization of DLT Workloads

We categorize DLT workloads from two perspectives. The first
one is scheduling latency. According to the survey in [17], there
can be two types of scheduling objectives: (i) Users expect their
jobs to be scheduled as soon as possible. These are exploratory
jobs for debugging and testing purposes, so users hope to receive
the execution feedback promptly and then adjust their programs
or hyperparameters. These jobs are generally called “best-effort
jobs”. (ii) Users do not need their jobs to be scheduled immedi-
ately. Instead, they set specific deadlines, before which these jobs
should be completed. Those jobs are mainly involved in scenarios
where certain deadlines are enforced, such as product development
pipeline, research paper submission, AI challenges, competition,
etc. These jobs are referred to as “SLO jobs”. In addition, the
survey in [17] discloses the existence of soft SLO jobs: users can
tolerate the deadline violation of DLT jobs to certain extent, giving
the scheduler more flexibility to schedule SLO jobs.

The second categorization perspective is stopping criteria.
There are also two common strategies for users to determine the
completion of a DLT job. (i) Iteration-based criterion. The users
just specify fixed numbers of iterations. Then the cluster executes
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Fig. 1: Comparison of training epochs using three stopping crite-
ria: default iteration-based stopping, stopping at maximum accu-
racy, and stopping at 99% of maximum accuracy over tasks. [C]
and [I] indicates CIFAR10 [30] and ImageNet [31] respectively.

the DLT jobs for the required iterations. Note that the model after
the final iteration may not be the optimal one due to the overfitting
phenomenon. The system will make checkpoints at different
iterations so the users can select the best model during training.
(ii) Performance-based criterion. The users specify the expected
performance for the resulting model. Then the training job will be
early stopped if the model reaches the performance requirement
at a certain iteration. Existing DL frameworks including ray [28]
and optuna [29] provide an interface to terminate a job when the
performance metric reaches a target value. RubberBand [25] and
HyperSched [16] also account for early stopping to terminate a job
when the performance metric converges. Note that the users are
required to set a maximal number of training iterations to avoid
unreachable performance requirements.
Comparison between different stopping criteria. The adoption
of the iteration-based stopping criteria simplifies the job runtime
prediction. However, it should be noted that the ultimate objective
of DL training is to attain high-performing DL models. While the
iteration-based stopping criteria are widely used, the performance-
stopping criteria may result in a reduction of training. As demon-
strated in Fig. 1, using max accuracy for performance-stopping
criteria can reduce the number of training iterations by up to 22%
compared to the default training iteration. The epoch reduction
can be up to 31% when the targeted accuracy is 99% of the
max accuracy. CHRONUS can lead to a potentially significant
consumption of GPU resources and delay in the execution of other
jobs in the future, due to the adoption of the maximal training
iteration to approximate job runtime.

2.2 Advantages of Joint Optimization

A key distinction between UNISCHED and CHRONUS lies in
the joint optimization. UNISCHED implements joint optimization
through two aspects.

First, joint job selection in UNISCHED benefits both profiler
and best-effort jobs without affecting the attainment of SLO. This
approach helps to avoid the situation where online profiling be-
comes a bottleneck for deadline guarantees. In contrast, CHRONUS

reserves a fixed number of GPUs (up to 16) for profiling purposes.
However, when the GPU cluster has a limited amount of resources
to meet the deadline guarantees of SLO jobs, a surge in SLO
job submissions can occur. The reserved GPU nodes may not be
sufficient to handle the profiling of these bursty job submissions,
leading to a large number of pending SLO jobs and potential SLO
violations. Scaling profiling resources adaptively in an isolated
manner might be another solution to address the bursty submission
issue. This solution would impose an extra burden on system main-
tenance. Differently, our proposed unified approach is elegant in
integrating scaling profiling resources adaptively without any extra
engineering effort. Additionally, CHRONUS does not distinguish

between the importance of best-effort jobs, which is not realistic
in a production environment.

Second, the joint optimization approach in UNISCHED can im-
prove the latency efficiency of best-effort jobs while still meeting
the deadline requirements of SLO jobs. As an example, consider
a scenario where four 6-GPU SLO jobs compete for access to
three 8-GPU nodes. The round-up technique used in CHRONUS

can only allocate GPU resources to three of the SLO jobs due to
its strict consolidated placement constraint. However, UNISCHED

leverages Estimator to predict the job runtime under dif-
ferent resource allocations, enabling it to satisfy the deadline
requirements of all four SLO jobs. Similarly, in a scenario where
there are three 6-GPU SLO jobs and one 6-GPU best-effort job,
CHRONUS cannot allocate resources to all the jobs. In contrast,
UNISCHED can relax the consolidated placement constraint for
one of the SLO jobs without violating its corresponding deadline,
and allocate consolidated resources to the best-effort job to reduce
the corresponding latency (i.e., maximizing its reward value).

3 SYSTEM DESIGN

UNISCHED is a new scheduler to achieve various scheduling
goals. UNISCHED is improved over CHRONUS [17], and addresses
its following limitations: (1) CHRONUS can satisfy the mixture of
both SLO and best-effort jobs, but only accept the iteration-based
stopping criterion. UNISCHED can handle jobs with the stopping
criterion of different performance metrics. (2) CHRONUS performs
job profiling, selection, and resource allocation separately in an
ad-hoc way. In contrast, UNISCHED introduces a unified MILP
framework, which jointly optimizes all the stages with better
efficiency. We begin by introducing our system assumptions and
providing an overview in Sec.3.1. Subsequently, we delve into the
details of each component in Sec.3.2 – 3.3.

3.1 System Assumptions and Overview

UNISCHED makes certain assumptions regarding DLT jobs and
GPU clusters. (1) The memory of a single GPU can support at least
single-sample training. (2) For simplicity, UNISCHED assumes
that the DLT jobs perform a data-parallel distributed training
approach and adopt the all-reduce to synchronize the gradients. (3)
Our consideration involves a shared cluster that has homogeneous
GPU resources and physical network connections. Our system can
also be generalized to heterogeneous GPU clusters (Sec. 8).

Fig. 2 shows the workflow of UNISCHED. It consists of two
main components: Estimator for predicting the job duration
and Selector for selecting jobs and allocating resources to them
for execution. Each job experiences two phases in its lifecycle.
The first phase is profiling (orange dashed lines in Fig. 2). All
the newly submitted jobs are treated as profiler jobs. (1) In the
Selector, the jobs are placed in the profiler job queue. The
reward generator is called to assign a reward to each job ( 1 ). The
policy generator then generates all possible resource allocation
solutions for each job ( 2 ). Finally, a MILP solver is utilized
to identify an effective solution ( 3 ) so the selected job will
be scheduled for profiling. (2) In the Estimator, the runtime
speed estimator predicts the runtime speed of each profiler job
over different resource allocations ( 4 ). The training iteration
estimator predicts the number of training iterations for jobs with
performance-based criterion ( 5 ). Based on such information, the
estimated job duration is produced.
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Fig. 2: UNISCHED consists of two components to manage DLT jobs: Estimator for predicting the job duration and Selector
for job selection and resource allocation. Each job experiences two phases: profiling phase (orange dashed line) for collecting job
information to estimate the job duration and execution phase (black dashed line) for job execution.

The second phase is execution (black dashed lines in Fig. 2).
The estimated duration is forwarded to the Selector. The job is
then placed in either the SLO job queue or best-effort job queue,
depending on its scheduling latency requirement specified by its
user. The following procedure is similar to the profiling phase:
the Selector generates the reward and allocation policy for the
job and adopts the MILP solver to identify the optimal scheduling
solution. The MILP solver also requires the estimated job duration
from the profiling phase for the solution generation. Then the
selected job will be placed on the assigned GPUs for execution.

UNISCHED unifies the scheduling workflow in two aspects.
First, in the profiling phase, UNISCHED processes the best-effort
and SLO jobs in a unified way. All the jobs are referred to as
profiler jobs. They are only distinguished in the execution phase.
Second, the Selector processes the profiling and execution
phases in a unified way, i.e., they adopt the same methodology to
generate the reward and allocation policy regardless of the phases.
These unified strategies make it easy to manage, implement, and
maintain the entire system workflow. Before elaborating on our
approach, we summarize the relevant symbols used in this paper
in Tab. 2 if not particularly specified.

3.2 Estimator
Formally, we consider a set of N jobs: J = {j0, j1, . . . , jN−1}.
Assume the vector of job duration for J is Tdur, the vector
of training iteration for J is Niter, the vector of time cost of
suspension and resumption for J is Nsr, the vector of time cost
per iteration for J is Titer.

The Estimator is responsible for predicting the duration
T dur
i of ji. This is calculated as follows:

T dur
i = T sr

i +N iter
i · T iter

i . (1)

Note that the number of training iterations N iter
i is directly

specified by users for iteration-based criterion, or indirectly pre-
dicted for performance-based criterion. We estimate Titer, Niter

and Tsr by the runtime speed estimator, training iteration estima-
tor, and SR-aware estimator, respectively. UNISCHED only needs
to allocate at most 2 GPUs for each job during the profiling stage,
regardless of its actual resource demands. We will discuss how to
schedule these jobs during the profiling stage in Sec. 3.3.

TABLE 2: Summary of Notations.

Sym. Definition

⌈·⌉ ceiling
⌊·⌋ floor

Tdur vector of job duration
Tsr vector of time cost of suspension and resumption
Titer vector of time cost per iteration
Tcomp vector of computation time cost per iteration
Tlease vector of lease length

Niter vector of training iterations
Ngpu vector of GPU request
Nnode vector of GPU node request
Ncell vector of cell count
Ncon vector of cell request

J job set
J slo SLO job set
N job count
M total GPU count in the cluster
ji ith job in J
jslo
i ith job in J slo

Fi deadline count of ji
Fmax maximal deadline count across all jobs
Df,i fth deadlines of ji
Vf,i reward value for deadline Df,i

Qf,i lease term count of deadline Df,i

Li lease term count to complete ji
Pi resource allocation count of job ji
Ai resource allocation set of job ji
Ai,p pth allocation policy of job ji
A∗

i optimal allocation policy for job ji
S binary matrix to indicate which deadline each job hits

xk,i indicator of whether ji obtains the kth lease
yk,i indicator of whether to select policy Ai,p

Rslo weighted deadline miss rate

3.2.1 Runtime Speed Estimator

DLT jobs exhibit an iterative and repetitive pattern during training.
This motivates UNISCHED to use a simple yet effective way to
estimate Titer. The Estimator executes profiler jobs on actual
machines for a fixed time, which is empirically set as five minutes.

Let Ngpu and Nnode be the vector of GPU request and GPU
node request for J respectively. We consider two scenarios for ji.

First, this is a single-GPU job (N gpu
i = 1). Then UNISCHED

allocates one GPU in profiling and measures its computation time
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T comp
i as the time cost per iteration, i.e., T iter

i = T comp
i .

Second, this is a multi-GPU job (N gpu
i ≥ 2). Then we should

consider both computation time and communication time. There
are also two possibilities: (i) this job will be executed on one
machine in the execution phase. Then we allocate two GPUs on
the same machine to this profiler job (N node

i = 1) and measure the
gradient communication time T 1

i ; (ii) this job will be distributed
to multiple machines in the execution phase (N node

i ≥ 2). Then
we allocate two GPUs from two machines to this profiler job and
measure the corresponding gradient communication time T 2

i . To
summarize, the time cost per iteration for ji can be modeled as:

T iter
i =


T comp
i if N gpu

i = 1,

T comp
i + (N gpu

i − 1) · T 1
i if N node

i = 1, N gpu
i ≥ 2,

T comp
i + (N gpu

i − 1) · T 2
i otherwise.

(2)
Previous works [6], [32] also adopt similar performance mod-

eling with Eq. 2 to estimate the job runtime speed. The key idea
is that we can just use two GPUs to capture the intra-node and
inter-node communication overheads (T 1

i and T 2
i ), then the total

timing cost for a job with an arbitrary number of GPUs can be
derived accordingly. Another point is that our system testbed only
focuses on utilizing PCIe and RDMA for communication. There
are cluster designs adopting the underlying GPU topology of non-
unified communication cost [33] including PCIe, NVLink, and
GPUDirect. We leave the modeling of non-unified communication
cost as our future work.
Discussion. We further demonstrates the effectiveness of Eq. 2
and how Eq. 2 handles some excepetional cases. (1) Our Eq. 2 is
a simplified version of runtime speed estimator in [6], where we
intentionally disregard the overlap between gradient computation
and network communication overhead. If they are overlapped,
Eq. 2 may result in an overestimation of T iter

i , which can secure
the deadline guarantees for SLO jobs and improve SLO guarantee
objective. (2) Eq. 2 cannot model the PCIe bandwidth saturation
scenario, which is very rare in practice. In case it happens, we
can update T iter

i during the execution stage to account for PCIe
bandwidth saturation.

3.2.2 Training Iteration Estimator
For the iteration-based stopping criterion, the user directly speci-
fies N iter. For the performance-based criterion, it is non-trivial to
predict N iter from the specified performance requirement. The per-
formance metric is typically non-linear to the number of training
iterations [34]. We adopt a method from [21] to predict the re-
lationship between the performance metric and training progress.
The basic idea is to model the observed performance metrics using
an ensemble of probabilistic learning curve models, e.g., Weibull,
log-power. These models can extrapolate future performance via
only a few observed performance metrics. This method is robust to
different performance metrics (accuracy, mAP, F1-score, loss) and
optimization techniques (SGD, Adam). Several schedulers [26],
[27] have adopted it to predict when the performance metric of
the DLT job will satisfy the stopping criterion.

UNISCHED first uses the performance metric observed in
the profiling phase to predict the required number of training
iterations. However, just using such metric in this phase can result
in significant prediction errors, as demonstrated in Fig. 7(c). The
prediction error comes from two aspects: (1) we change the batch
size in the profiling phase to collect the accurate job computation
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Fig. 3: The overhead of job suspension and resumption: (a) the
job suspension overhead (y-axis) of training VGG19, ResNet18,
ResNet50, MobileNetV2, GoogLeNet over CIFAR10 on 1 GPU
and 16 GPUs; (b) the job resumption overhead (y-axis) of training
VGG19 over CIFAR10 on different numbers of GPUs (x-axis).

time per iteration, and (2) the number of collected metrics is
limited during the profiling phase. We notice that even we use
the training hyper-parameters and the number of required GPUs,
the prediction error is still significant (shown Fig. 7(c) when x-
axis is 20%). Hence, we also collect the performance metrics in
the executing phase to gradually eliminate the prediction error.

3.2.3 SR-Aware Estimator
UNISCHED allows a DLT job ji to be suspended and resumed
during the training progress, which increases the scheduling flex-
ibility but inevitably brings a certain overhead of suspension and
resumption operations, denoted as tsr

i . Fig. 3 shows the overhead of
job suspension and resumption. In Fig. 3(a), the suspension over-
head of various models over CIFAR10 with different numbers of
GPUs remains consistently within a range of 4 seconds. Fig. 3(b)
illustrates that scaling the number of allocated GPUs increases the
resumption overhead of training VGG19 over CIFAR10. Overall,
the resumption overhead is much larger than the suspension
overhead. Note that tsr

i represents the combined overhead of job
suspension and resumption, rather than that of job resumption or
suspension. Practically, we use such combined overhead during the
profiling phase and update it in the execution phase. According
to Fig. 3, the difference in the combined overhead during the
profiling (2-GPU) and execution (16-GPU) phases is within 5
seconds for training VGG19 over CIFAR10. This suggests that
directly using the combined overhead during the profiling phase is
acceptable compared to the long training time.

For an SLO job ji, we assume it runs for n lease terms, and its
corresponding deadline is m lease terms (n ≤ m). A lease term
is the smallest unit for a job to run continuously, which will be
explained in detail in Sec. 3.3.1. The overhead of suspension and
resumption operations for an SLO job ji is up to tsr

i .
We assume the occurrence of suspending and resuming a

DLT job follows a uniform probability distribution. Hence the
probability that an SLO job is suspended and resumes for k times

is
Ck

n−1C
k+1
m−n+1

Cn
m

, where k ∈ [0,min(n−1,m−n)]. Therefore, we
can approximate the overhead of job suspension and resumption
T sr as follows:

T sr
i =

min(n−1,m−n)∑
k=0

k · tsr
i ·

Ck
n−1C

k+1
m−n+1

Cn
m

. (3)

For a best-effort job that requires n lease terms, the prob-
ability that suspension and resumption occur is 1

2 . Hence, its
corresponding T sr is n

2 · tsr
i . To summarize, Estimator offers

three unique contributions. (1) It predicts the speed of DLT jobs
across various resource allocation topologies with at most 2 GPUs.
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(2) It approximates the number of training iterations required to
achieve a target validation metric. This estimation is particularly
valuable for jobs with performance-based stopping criteria. (3) It
considers the significant overhead of suspension and resumption
in job execution. By accounting for these factors, our estimator
effectively minimizes the gap between the predicted duration of a
job and its actual execution time.

3.3 Selector
The Selector is primarily responsible for producing resource-
time scheduling decisions for profiler jobs in the profiling phase,
and SLO jobs and best-effort jobs in the execution phase. It adopts
the lease-based training scheme to convert job scheduling into the
MILP optimization problem and designs a reward generator to
successfully manage all three types of jobs. It also uses the policy
generator to select the job and resource allocation jointly.

3.3.1 Lease-based Training
A DLT job is split into multiple periods (i.e., lease terms) that have
equal length. A job is allowed to run only if the scheduler assigns
a lease term to it. It needs to renew the lease when it expires. The
job can continue the execution if the renewal is successful, and
suspended and yield the resources otherwise.

UNISCHED implements two sorts of leases: SLO lease for
SLO jobs, and BE lease for best-effort and profiler jobs. During
each scheduling cycle, the expired leases are allocated to the
chosen jobs by the Selector. To make it easy to manage, the
length of an SLO lease is set as an integral multiple of that of a BE
lease. In this setting, the expiration of a BE lease may not cause
the expiration of an SLO lease, while the expiration of an SLO
lease occurs simultaneously with the expiration of a BE lease.
Fig. 4 shows an example of the two leases.

Fig. 4: Illustration of lease terms. The duration of the SLO lease
term is set as an integral multiple of that of the BE lease.

3.3.2 Reward Generator
Previous deadline-aware schedulers [11], [12], [13] only take into
account the strict deadline requirement, i.e., a job must be finished
before a specific time. Based on a user survey in [17], users expect
to have a soft deadline requirement, where the DLT jobs can be
completed after the deadlines with some penalty.

To enable this demand, a reward function is introduced in
UNISCHED to formulate various types of requirements (profiler,
best-effort, strict SLO, and soft SLO). Cluster users can also give
such functions to the scheduler during job submission. The reward
is defined as a step function with values ranging between 0 and
100. Fig. 5(a) illustrates the functions of different requirements.

A profiler job expects a short waiting time to achieve the
runtime speed information as soon as possible and thus is regarded
as a best-effort job with a fixed remaining time (e.g., 5 minutes).
Therefore we set the reward of all profiler jobs as a fixed reward
value 1. Such reward design handles well the starvation of jobs
while maintaining the deadline guarantee for SLO jobs. We have
two scenarios to consider: (1) if the cluster-wide GPU resources
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Fig. 5: The illustration of different types of jobs: (a) the relation-
ship between completion time and reward value for different types
of jobs; (b) A two-by-two matrix to categorize these types.

available are only sufficient to meet the deadlines of SLO jobs,
newly submitted jobs may experience resource starvation until
certain jobs are completed, otherwise users have the option to
assign an exceptionally high reward value, thereby increasing the
likelihood of their job being executed quickly; (2) if there exist
some extra cluster-wide GPU resources in addition to the ones
used for meeting deadlines of SLO jobs, the reward generator of
UNISCHED gives priority to newly submitted jobs (profiler jobs)
over best-effort jobs. This prioritization strategy effectively pre-
vents job starvation. Best-effort jobs are expected to be completed
as soon as possible. Their reward values are a reciprocal of the
corresponding estimated remaining time. Strict SLO jobs need to
be finished before the deadlines (= 100). Their reward decreases
gradually and gives longer delays in completion time1.

To ensure that newly submitted jobs and best-effort jobs do
not impact the deadlines of SLO jobs, we assign a significantly
lower reward value to profiler and best-effort jobs compared to
SLO jobs (using a ratio of 1 out of 100). Additionally, to expedite
the completion of profiler jobs, we set their reward value higher
than any best-effort jobs. For best-effort jobs, the reward value
is reciprocally proportional to the remaining time, prioritizing
jobs with the shortest remaining time. In fact, how to determine
the reward of any job depends upon the practical needs. Setting
extremely high values for SLO jobs would discourage users from
submitting best-effort jobs. Setting small values for SLO jobs
would encourage UNISCHED to satisfy more best-effort jobs to
maximize the reward values and violate the deadlines for SLO
jobs. We follow the prior work [13] and account for our user
survey to determine the reward value. There is no complete answer
to the selection of reward values. We leave it as our future work.

Our reward function enables the Selector to manage all
types of DLT jobs in a unified way, as shown in Fig 5(b). The
best-effort jobs can be counted as the noncritical profiler job.
Similar to the profiler job, the strict SLO job has a constant reward
value besides exceeding the deadline. The Soft SLO job can be
considered as the noncritical strict SLO job.

3.3.3 Policy Generator
The policy generator produces all possible resource allocation
solutions for each job. Following the buddy cell idea in HiveD [4],
we denote 8-GPU, 4-GPU, 2-GPU, 1-GPU compute nodes as
level-4, level-3, level-2, level-1 cells respectively. Such resource
abstraction enables us to allocate resources considering GPU
affinity not just the number of GPUs.

We consider a job ji with N gpu
i GPUs to explain how to

leverage this resource abstraction to generate resource alloca-
tion policies. We use a quadruple (c0, c1, c2, c3) to denote any

1. Users may have other expressions of reward functions for their soft SLO
jobs. Note that any functions can always be approximated as the step function
in UNISCHED.
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allowable resource allocation for this job, which represents the
requested numbers of level-0, level-1, level-2, and level-3 cells,
respectively. For example, for a job requesting 6 GPUs, possible
resource allocations are (0, 0, 0, 1), (0, 1, 1, 0), and (6, 0, 0, 0).
For N gpu

i GPUs, the policy generator outputs the allocation poli-
cies by enumerating all quadruples. To reduce the optimization
complexity of making allocation decisions, the policy generator is
only applicable to the job with N gpu

i ≤ 16.

3.3.4 Joint Optimization of Job Selection and Allocation
With the assistance of the reward generator and policy generator,
we can model the process of job selection and resource allocation
as a MILP problem. At each BE scheduling cycle, the Selector
is responsible for combining all the jobs (including SLO jobs at
the SLO scheduling cycle) and making decisions for job status
update and GPU resource assignment.
Consideration of rewards. We consider at one scheduling cycle
there are N jobs: J = {j0, j1, j2, . . . , jN−1} and M available
GPUs. Each job ji requires N gpu

i GPUs, with the duration T dur
i

estimated by the Estimator. We denote the deadline count
of job ji as Fi. When the job ji is completed right before the
corresponding fth deadline, it can obtain the reward value Vf,i.
Further, we use Fmax to represent the max number of deadlines
across all jobs. Assume the vector of lease length for J is Tlease.
For job ji, we set T lease

i as BE lease length for best-effort and
profiler jobs, and SLO lease for SLO jobs respectively. For each
job ji, it requires Li = ⌈T dur

i /T lease
i ⌉ lease terms to complete. It

also needs Qf,i = ⌊Df,i/T
lease
i ⌋ lease terms to complete before

each deadline, where f ∈ [Fi]
2.

We denote a binary matrix S ∈ BFmax×N , where sf,i denotes
whether ji hits the corresponding fth deadline. A binary variable
xk,i is used to represent whether ji gets the kth lease. The MILP
solver is expected to produce a solution for the following problem:

max
S

∑
i∈[N ]

∑
f∈[Fi]

sf,iVf,i, (4)

subject to:

xk,i, sf,i ∈ {0, 1},∀i ∈ [N ], f ∈ [Fi], (5)∑
f∈[Fi]

sf,i ≤ 1,∀i ∈ [N ], (6)

∑
k∈[Qf,i]

sf,ixk,i ≤ sf,iLi,∀i ∈ [N ], f ∈ [Fi]. (7)

Objective (4) aims to maximize the total reward values of all
jobs in the cluster. Constraint (5) restricts xk,i and sf,i as binary
values. Constraint (6) ensures each job gets at most one feasible
solution to meet the (soft) deadline. Constraint (7) guarantees all
jobs need to be finished before the (soft) deadlines.
Consideration of resource allocations. Next, we discuss how to
formulate resource allocation constraints. For a job ji, UNISCHED

adopts the policy generator to produce the resource allocation set
Ai, which contains Pi allowable resource allocation solutions. We
denote as A∗

i the optimal allocation that meets the consolidation
requirement. We use ϕ(ji, Ai,p) to represent the runtime speed
of ji under an allocation Ai,p ∈ Ai. We can leverage the
Estimator to estimate ϕ(ji, Ai,p). Then we formulate the

2. We define [N ] = {0, 1, . . . , N − 1} in this paper, where N can be
different positive integers.

normalized runtime speed ϕ̄ to quantify the correlation between
the job throughput and resource allocation as follows:

ϕ̄(ji, Ai,p) =
ϕ(ji, Ai,p)

ϕ(ji, A∗
i )

. (8)

A higher ϕ̄(ji, Ai,h) indicates job ji runs faster under the alloca-
tion Ai,h.

We introduce a binary variable yi,p to represent whether we
select the solution Ai,p for ji with resource allocation set Ai. We
denote the vector of total cell request as Ncon and the vector of
free cell count as Ncell. The requested number of level-g cells for
resource allocation Ai,p is denoted as Ai,p(g). Then we can add
the following constraints into the optimization problem:

yi,p ∈ {0, 1},∀i ∈ [N ], p ∈ [Pi], (9)
3∑

g=0

2g ·N cell
g ≤ M, (10)

N con
g =

∑
i∈[N ]

∑
p∈[Pi]

yi,pAi,p(g),∀g ∈ {0, 1, 2, 3}, (11)

∑
k∈[Qf,i]

yi,psf,ixk,iϕ̄(ji, Ai,h)

≥ yi,psf,iLi,∀i ∈ [N ], f ∈ [Fi], p ∈ [Pi], (12)∑
p∈[Pi]

yi,p ≤ 1,∀i ∈ [N ]. (13)

Constraint (9) enforces yi,p to be a binary value. Con-
straint (10) guarantees the number of occupied GPUs is no
greater than the capacity of the entire cluster. Commonly, we set
N cell

0 , N cell
1 , N cell

2 , N cell
3 as 0, 0, 0,M/8 respectively. Constraint

(11) guarantees the feasibility of the resource allocation solution.
Constraint (12) guarantees the number of requested leases can
ensure the completion of the job under given resource allocations.
Constraint (13) ensures each job is assigned with at most one
feasible resource allocation solution.

Besides, we also need to ensure the identified solution achieves
consolidation placement. In particular, we refer 1-GPU, 2-GPU, 4-
GPU, and 8b-GPU jobs (b ∈ Z+) as consolidation-friendly jobs,
and other types of jobs are called consolidation-hostile jobs. We
say a resource allocation solution enjoys the consolidation feature
if each job ji with N gpu

i GPUs is deployed on ⌈N gpu
i /8⌉ nodes.

Then the following proposition is given:

Proposition 1. Assume the cluster has N cell
0 level-0, N cell

1 level-1,
N cell

2 level-2, and N cell
3 level-3 free cells respectively. The pending

queue only contains N con
0 1-GPU, N con

1 2-GPU, N con
2 4-GPU, and

N con
3 8-GPU consolidation-friendly jobs3. There exists a solution

that can achieve the consolidation placement when the following
constraint (14) is satisfied:

3∑
g=i

2g−i ·N con
g ≤

3∑
g=i

2g−i ·N cell
g ,∀i ∈ {0, 1, 2, 3}. (14)

Proof. It is easy to construct a solution to meet the requirement.
We first allocate N con

3 level-3 free cells to 8-GPU jobs in a
consolidation way such that the allocated nodes have no GPU
fragmentation due to N con

3 ≤ N cell
3 . Then we split the remaining

m′(= N cell
3 − N con

3 ) level-3 cells into 2m′ level-2 cells, and we

3. Without loss of generality, an 8b-GPU job is counted as b 8-GPU jobs.
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have 2m′+N cell
2 level-2 cells. According to Eq. 14, the number of

level-3 free cells is no less than that of 4-GPU jobs. Recursively, 2-
GPU and 1-GPU jobs can satisfy the consolidated placement.

Solving the optimization. UNISCHED leverages the MILP solver
to find a solution that can achieve the Objective (4) while satisfy-
ing the Constraints (5-7, 9-14). Based on the solution, UNISCHED

identifies the jobs that need to be scheduled at this cycle (xk,i),
and the optimal resource allocations to host these selected jobs
(yi,p). The rest jobs are put in a pending queue and will be
considered at the next scheduling cycle. In terms of profiling time
requirement and BE lease scheduling flexibility, the length of a
BE lease term is fixed as 5 minutes. The length of an SLO lease
term is critical to the MILP solver efficiency. A short SLO lease
causes too many preemption operations for SLO jobs, while a
longer SLO lease makes the scheduling less elastic. We set it as
10 minutes empirically.

Note that it takes some time for the MILP solver to generate
the optimization solution, which can have an impact on the
job execution. In order to mitigate the impact of these delays,
UNISCHED employs a caching mechanism for the optimization
solution generated during the previous scheduling cycle. If the
MILP solver cannot generate a new solution for the current
cycle within certain time, UNISCHED assigns the cached solution
to select jobs to minimize the search space and computational
overhead, and subsequently re-invokes the MILP solver.

4 IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of our simulator and
Kubernetes [35] prototype. Then, we describe how to construct our
testbed and introduce the metrics and baselines.

4.1 Implementation Details

We develop a trace-driven simulator with 11,978 lines of Python
code. It can simulate different scheduling mechanisms in GPU
clusters. The implementation of UNISCHED in our simulator
comprises 1,113 lines of Python code. The MILP solver employed
as the backend is Gurobi 9.1 [36].

Our physical prototyping implementation is built on top of
Kubernetes [35], which contains three key components: a client-
side watcher, controller, and scheduler. (1) A client-side watcher
is utilized to monitor the execution of DLT jobs and gather
the validation metric and job runtime speed. When the watcher
receives notifications from the controller that the lease will expire,
it makes checkpoints for the model. The client-side watcher also
reports the collected validation metric and runtime speed every 5
minutes. (2) The controller notifies the scheduler when the lease
of a DLT job is nearing its expiration. It also communicates with
the watcher to trigger a job checkpoint. The implementation of
the job checkpoint is via the signal handler function. It talks to the
MILP solver to solve Eq. 4 and make decisions about job selection
and resource allocations. The MILP solver is implemented with an
open-source goop library [37]. (3) The scheduler is provided with
scheduling information and events (e.g., estimated remaining time,
lease renewal). It is also responsible for job management (e.g.,
preemption, termination, execution, and assigning resources).

4.2 Testbed
In this study, we evaluate the performance of two homogeneous
GPU clusters, C120 and C96, each consisting of 120 and 96 nodes,
respectively, with 8 GPUs per node. To assess the performance of
these clusters, we employ two realistic DLT job traces: the Helios
trace [23] from SenseTime and the Philly trace [2] from Microsoft.
We use the job submission time, job duration, and number of
GPUs required in the Helios and Philly trace to construct the
workloads for evaluation. As the job traces do not provide deadline
information, we generate deadlines for strict and soft SLO jobs
using a method that ensures a fair representation of real-world
conditions. Specifically, for strict SLO jobs, we randomly generate
a deadline within a range of 1.1 to 2 times the job duration, while
for soft SLO jobs, we set the first deadline, D0,i, in the same way
as strict SLO jobs. We then set additional soft SLO deadlines at
1.1, 1.2, and 1.5 times D0,i, with corresponding reward values of
80, 50, and 20, respectively, as determined by a user survey [17].

Each job in our simulation trace contains submission time,
duration, deadline information, the number of GPUs, user name,
job type, model type, and stopping criteria. We consider two
stopping criteria: iteration-based, and performance-based, and the
jobs adopting these criteria account for 80%, 20%, respectively.
The Helios and Philly trace do not include explicit information
about iteration or performance criteria. Instead, they provide
attributes such as “duration” and “name”. For iteration-based jobs,
we use the job duration and job runtime speed to deduce the cor-
responding training iteration. For performance-criterion jobs, we
identify a set of performance-aware keywords, e.g., “detection”,
“CIFAR10”, “ImageNet”, “face”. Only for these specific jobs do
we assign performance-based stopping criteria. For a job with
the performance-based criterion, we randomly choose the best
metric or 99% best metric throughout the training as the target
value. Besides, we use the profiled runtime speed on different
GPU allocations and the preemption overhead of a real job trace
for evaluation. Note that we scale the job speed for performance-
criterion jobs to enforce the duration of performance-criterion jobs
to match that from the trace.

Besides, we adopted the same technique as CHRONUS to
generate six workloads from Helios and Philly. These workloads
included jobs with all strict SLOs (H SLO and P SLO); work-
loads that mixed strict SLOs with best-effort jobs (H MIX1 and
P MIX1); and workloads that included strict SLOs, soft SLOs,
and best-effort jobs (H MIX2 and P MIX2).

4.3 Metrics
Weighted Deadline Miss Rate. This is to assess the level of
attainment with the SLO requirements. We consider a set J slo

of SLO jobs, where each job jsloi is assigned a reward value
W(jslo

i ) based on its SLO specification, as illustrated in Fig. 5(a).
To quantify the effectiveness of meeting these SLO requirements,
we introduce the concept of a weighted deadline miss rate Rslo,
which is defined by Eq. 15. Specifically, we set the bounds of the
reward values as Wmin = 0 and Wmax = 100.

Rslo =
1

|J slo|
∑

jslo
i ∈J slo

W(jslo
i )−Wmin

Wmax −Wmin
. (15)

Job Completion Time (JCT). This measures the latency effi-
ciency of best-effort jobs to evaluate the scheduling performance.
A smaller JCT indicates higher scheduling efficiency. This met-
ric measures the duration between the job submission and job
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completion. Hence, the profiling overhead is also incorporated to
compute Rslo and JCT.

4.4 Baselines
To fully demonstrate the benefits of UNISCHED, we select six
mainstream schedulers for comparison, which are classified into
two categories. Besides, we also make a detailed comparative
analysis between CHRONUS and UNISCHED.
Deadline-aware scheduler: (1) 3Sigma [22] applies the MILP
solver to schedule a mix of SLO and best-effort big data jobs. It
favors that SLO jobs preempt best-effort jobs, which can remark-
ably restrict the MILP solver’s search space. The scheduling cycle
of 3Sigma is set as 60 seconds based on the job time scale in
our traces. (2) GENIE [14] proposes an offline prediction model
to estimate the processing rate and response latency for various
DL jobs. It enables DLT jobs to be executed on different GPU
resources in an elastic way and selects the best placement policy.
It assigns the highest priority to SLO jobs with the smallest laxity
but does not consider best-effort jobs. We give best-effort jobs
the lowest priority. (3) Hydra [18] aims to reduce the average job
latency while reducing the deadline miss rate. We set the priority
of SLO jobs higher than that of best-effort jobs. Also, we adopt
the shortest remaining time first to manage both types of jobs. We
implement it to fit into a homogeneous GPU cluster. Note that,
Hydra does not consider preemptive scheduling.
Deep Learning scheduler: (4) Optimus [19] leverages an online
fitting model to predict the job training speed and dynamically
allocates GPU resources for jobs to prioritize the job to minimize
the job completion time. We adopt the same implementation
in [6]. (5) Themis [7] introduces a new metric, the finish
time fairness, to assess the scheduling fairness. We also use the
model proposed in [21] to estimate the duration of jobs with the
performance-based stopping criteria. We implement Themis based
on the implementation in [38].

5 END-TO-END EVALUATION

We first compare the performance difference between physical and
simulator results to validate the fidelity of our simulator (Sec. 5.1).
Then, we measure the performance of the entire system using our
simulator, and compare it with various baselines (Sec. 5.2).

5.1 Physical Evaluation
Cluster testbed. We set up a cluster consisting of 16 GPU nodes,
and each node has 4 Tesla V100-32GB GPUs, 1 × 200 Gbs HDR
InfiniBand, 64 CPU cores, and 256 GB memory, connected via
PCIe 3.0 x16. Our prototype deploys upon Kubernetes 1.18.2
and adopts CephFS 14.2.8 to establish a ceph distributed storage
cluster to store checkpoints and resume the job progress. When
the job experiences lease expiration, it will receive a notification
from the scheduler to save the training state into the distributed
storage. We choose the H MIX2 workload to compare the eval-
uation results between our simulator and Kubernetes prototype.
The MIX2 workload contains a mixture of best-effort, strict
SLO and soft SLO jobs, which is a realistic scenario. Further-
more, the proportion of distributed DL training is higher than
Philly [23], and distributed DL training involves many complex
placement decisions. To synthesize our evaluation workload, we
randomly sample a number of jobs from the H MIX2 workload
and assign random common DL models (ResNet18, ResNet50,

TABLE 3: Performance comparisons between simulation and
kubernetes implementation in Rslo and average JCT over different
workload submission densities.

Job Load T [360] T [720]

Metric Rslo (%) Avg JCT (min) Rslo (%) Avg JCT (min)

Simulator 4.97 266.39 13.52 253.98
Kubernetes 3.92 274.42 16.11 267.40
Relative Diff 1.08% 2.93% 2.57% 5.38%

MobileNetV2, VGG19, BERT) over different datasets (CIFAR10,
ImageNet, WikiText2) to them. We sample the job whose number
of requested GPUs is below 16 and the duration of which ranges
between 5 minutes and 180 minutes. We follow the Helios’s job
arrival pattern and only sample jobs the submission time of which
is before eight o’clock. We also vary the job submission density
and compare the performance between Kubernetes implementa-
tion and simulation.
Evaluation results. Tab. 3 reports Rslo of SLO jobs and average
JCT of DLT jobs from simulation as well as Kubernetes im-
plementation. We consider configurations (T [m]) with different
job densities with a fixed cluster capacity of 64 GPUs: T [m]
denotes m jobs are submitted within the first 8 hours. For
Rslo, the gap between simulation and Kubernetes prototype is at
most 2.57%. For average JCT, the maximal relative performance
difference between simulation and Kubernetes is 5.38%. For
small submission density, the deadline guarantee of the simulator
performs slightly worse than that of Kubernetes prototype. For
T [360] workloads, we observe that Kubernetes prototype fails
to satisfy the deadlines of certain long-duration SLO jobs, and
instead leaves more resources for other jobs as a result of deadline
guarantee performance improvement. For T [720] workloads, the
high submission density can lead to heavy resource contention,
and the simulator can use the predicted information to make more
accurate scheduling decisions. Therefore, the simulator presents
better deadline guarantee performance. Overall, the difference is
not significant and does not alter the conclusions from simulations.

5.2 Simulator Evaluation

SLO Enforcement. We compare Rslo of UNISCHED with other
baseline systems for the six workloads in Fig. 6(a). We observe
that UNISCHED gives the almost best results in all the workloads.
In contrast, DL schedulers are poor at guaranteeing deadlines, as
their designs do not take SLO into consideration.

Deadline-aware schedulers are more effective than DL sched-
ulers. (1) For SLO workloads, GENIE is superior to 3Sigma and
Hydra, but not as good as UNISCHED due to the utilization of the
preemption feature. UNISCHED obtains 1.17 - 4.82 × reduction
in Rslo compared to these baselines over SLO workloads. (2) For
both MIX1 and MIX2 workloads, the existence of best-effort jobs
further reduces Rslo because deadline-aware schedulers can free
more GPUs for SLO jobs by sacrificing best-effort jobs. In com-
parison to deadline-aware schedulers including 3Sigma, Hydra,
and GENIE, UNISCHED attains 0.95 - 2.77 × reduction in Rslo.
Compared to DL schedulers, the reduction of Rslo in UNISCHED is
much higher, i.e., 2.01 - 6.84 ×. Particularly, UNISCHED achieves
6.84X improvement in Rslo compared to Themis on the P MIX1
workload. There is no clear dominant winner among 3Sigma, Hy-
dra, and GENIE. Additionally, GENIE cannot execute preemptive
scheduling, hence its effectiveness in deadline guarantee is not
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Fig. 6: Comparisons between different schedulers. UNISCHED outperforms other baselines in Rslo and average JCT over different
workloads (a-b) and submission densities (c-d).

satisfactory in a mixed workload scenario. (3) Compared to MIX1
workloads, UNISCHED significantly reduces Rslo of SLO jobs in
MIX2 workloads, due to the introduction of soft deadlines.
Best-effort job performance. Fig. 6(b) displays the average JCT
of best-effort jobs, normalized to that of UNISCHED. It can be
observed that, in comparison to other schedulers, UNISCHED

remains the most effective, and obtains 1.18 - 4.02 × reduction in
latency over different workloads. It outperforms DL schedulers by
1.18-3.11 × because it has sufficient GPU resources to minimize
the latency of best-effort jobs without violating the SLO require-
ments. Optimus can achieve shorter latency in Helios workload
in that Helios trace contains a larger proportion of distributed DL
jobs than Philly trace. UNISCHED reduces the latency of deadline-
aware schedulers by 1.66 - 4.02 ×, as it seriously sacrifices these
jobs to meet the requirements of more SLO jobs.
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Fig. 7: Error analysis of predictor: (a) The average estimation
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predictor over training progress (x-axis) across different tasks; (d)
the Estimator’s estimation error on best-effort and SLO jobs.

Impact of the job density. We evaluate the performance of
various schedulers with different job densities with the H MIX2
workload. In order to evaluate the performance of our system
under various job densities, we conduct experiments where we
randomly remove 20% of jobs to reduce the job density to
80%, and also inject additional jobs to increase the densities to
120%, 140%, and 160%, as described in [39]. Fig. 6(c) shows
the results of SLO enforcement over different job submission
densities. UNISCHED reduces Rslo by 1.18-2.67 × compared to

other schedulers. A higher job density can increase Rslo of all
scheduling systems, and a lower density favors the SLO enforce-
ment of 3Sigma and GENIE. However, UNISCHED performs the
best SLO enforcement in various job densities.

Fig. 6(d) shows the average JCT of best-effort jobs, normalized
to that of UNISCHED. In terms of latency reduction, UNISCHED

outperforms GENIE by up to 3.78 × when the submission
density reaches 160%. Our UNISCHED gives the lowest JCT
for most configurations. An exceptional scenario occurs when
Optimus exhibits a latency that is 0.67 × that of UNISCHED

at a submission density of 80%. Compared to deadline-aware
schedulers, UNISCHED is able to release sufficient GPU resources
for best-effort jobs without violating the requirement of SLO jobs.
Compared to DL schedulers, UNISCHED can schedule best-effort
jobs more effectively based on the profiling information.
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Fig. 8: Average numbers of sus-
pension and resumption over dif-
ferent workloads.

Analysis of suspension and
resumption. Fig. 8 shows the
average numbers of suspension
and resumption events over
different workloads. For best-
effort jobs, UNISCHED tends
to allocate GPU resources to
shorter jobs. Hence, these jobs
are prone to renewal the leases
with short remaining time. Dif-
ferently, SLO jobs experience
an average of 2-6 suspensions and resumptions, which is sig-
nificantly higher compared to best-effort jobs. This is because
UNISCHED tends to allocate GPU resources to emergent SLO
jobs. As a result, when newly submitted jobs arrive, UNISCHED

needs to reallocate GPUs in order to satisfy more SLO jobs. Con-
sequently, SLO jobs experience more suspension and resumption
on average across different workloads.

6 PERFORMANCE BREAKDOWN

We first investigate the contribution of the Estimator and
Selector in Sec. 6.1 and 6.2, respectively. Then we compare
between UNISCHED and CHRONUS in Sec. 6.3, and analyze the
advantages of UNISCHED over CHRONUS.

6.1 Estimator Evaluation
We first evaluate the effectiveness of the Estimator, where the
job runtime estimation is conducted.
Error analysis of predictor. We analyze the accuracy of the
Estimator from different perspectives. Fig. 7(a) shows the
average estimation errors of the job runtime speed (y-axis) for
our evaluated DL models via profiling two GPUs over different
allocated GPUs (x-axis, G[x] represents the number of allocated
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Fig. 9: Analysis of the Estimator. (a) Rslo comparison between the unification mechanism and static profiler; (b) The impact of the
training iteration estimator on Rslo; (c) The impact of the SR-aware estimator on Rslo; (d) The impact of the estimation error on Rslo.

GPUs is x). The increase in allocated GPUs widens the gap
between prediction and actual job runtime speed. The average
prediction error is within 5%. Furthermore, the runtime speed
estimator performs the worst on BERT with a local batch size
per GPU of 12. Fig. 7(b) compares its actual and prediction results
across varied numbers of allocated GPUs. The error is up to 16.3%
when 16 GPUs are assigned.

Fig. 7(c) presents the prediction error of training iteration with
the increase of training progress. Note that we disable the training
iteration prediction for training BERT due to a small number of
epochs. The prediction error presents a decreasing trend when the
Estimator collects more validation performance information.

Fig. 7(d) shows the Estimator’s prediction performance on
best-effort and SLO jobs across different Heilos traces. Consid-
ering the large estimation error of the iteration estimator at the
initial stage of the training, we compare the prediction results
in the middle of the training with the actual execution time.
The average prediction error is still within 10%. Overall, our
designed Estimator presents accurate predictions across various
GPU demands, models, and job types.
Impact of unifying different types of jobs. In the profiling
phase, UNISCHED uses the reward generator to schedule the
profiler jobs together with the best-effort and SLO jobs in a
unified way. This reward generator enables UNISCHED to make
dynamic resource allocations to profiler jobs. To demonstrate its
superiority, we compare UNISCHED with a system that statically
allocates a fixed number of compute nodes (2 in our experiments)
for job profiling. Fig. 9(a) shows Rslo between UNISCHED and
such static profiler. We observe that UNISCHED achieves better
Rslo compared to the static profiler. This is because UNISCHED

can dynamically adjust the resource scale for profiler jobs by
planning all jobs globally. Besides, our experiment suggests that
UNISCHED can significantly decrease the longest pending time
from 2,105 seconds to 840 seconds, so the Estimator can
respond to the jobs promptly.
Effectiveness of the training iteration estimator. Our
Estimator can support the performance-based stopping crite-
rion by predicting the number of training iterations. To evaluate
the effectiveness of this mechanism, we consider a baseline where
the system directly executes each job with the maximal number
of training iterations provided by its user. Fig. 9(b) shows Rslo

of these jobs with and without the training iteration estimator.
We observe that Rslo is reduced by 0.7%-5.1% when UNISCHED

estimates the number of iterations. This results from that the
training iteration estimator can inform the Selector to leverage
more accurate time-resource information to satisfy the deadlines.
Effectiveness of the SR-aware estimator. We evaluate our SR-

aware estimator in the Estimator (Sec. 3.2.3). Fig. 9(c) shows
Rslo of SLO jobs and latency of best-effort jobs with and without
the SR-aware estimator. The x-axis represents the ratio between
the experimental suspending/resuming overhead and actual over-
head. We manually increase the overhead and observe that our SR-
estimator can effectively reduce the deadline miss rate. The SR-
aware estimator can provide a more reasonable runtime estimation
and lead UNISCHED to make time-dimension resource allocations
more accurately.
Estimation accuracy analysis. The scheduling performance can
be affected by the prediction accuracy of the Estimator. We
perform a sensitivity analysis to evaluate this dependency. We
perturb the profiled job runtime with random Gaussian noise, and
present the scheduling result for different traces in Fig. 9(d). In
this figure, x-axis denotes the standard deviation of the injected
noise and y-axis shows Rslo of SLO jobs. We can see UNISCHED

demonstrates strong robustness at the noise scale smaller than
40%. The Estimator can easily achieve this in practice.

6.2 Selector Evaluation

Impact of the SLO lease length. We consider how the SLO
lease length could influence the deadline enforcement. Fig. 10(a)
shows the JCT of best-effort jobs and Rslo of SLO jobs with
the H MIX1 workload. We observe that a short lease term (leq
5 minutes) can cause more frequent preemption operations with
large overhead, leading to higher Rslo for SLO jobs. A longer
lease term could also increase Rslo as it restricts the scheduling
opportunities. Additionally, a similar experiment on the H MIX2
workload is also conducted. The performance of Rslo and latency
is small between 10 and 30 minutes, but the 10-minute SLO lease
length still achieves the lowest Rslo and latency.
Effectiveness of the MILP solver. The MILP solver can ef-
fectively improve the SLO enforcement by maximizing the total
reward value (Eq. 4). Here, we consider two scenarios for the
MILP solver: (1) maximizing the objective subject to the con-
straints. (2) only finding a feasible solution to obey the constraints.
Fig. 10(b) and 10(c) show Rslo of SLO jobs and the latency of
best-effort jobs respectively over different workloads with and
without the consideration of the objective. Our observation is that
maximizing the objective can significantly reduce Rslo of SLO
jobs, and slightly increase the latency of best-effort jobs. As we
set a high reward value for SLO jobs, the scheduler sacrifices the
latency of best-effort jobs to maximize the total reward value.

The latency of the MILP solver has impact on the scalability
of UNISCHED. When the cluster has a larger scale and higher
job submission rate, the MILP solver demands more time to find
the solutions, which could possibly cause larger pending overhead
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Fig. 10: Performance analysis of the Selector. (a) Impact of the SLO lease length on Rslo and job latency; (b) Impact of the objective
on Rslo; (c) Impact of the objective on the job latency; (d) Impact of the cluster capacity on the MILP solver latency.

and scheduling inefficiency. To evaluate this impact, we select
H MIX2 and adjust the number of jobs to be proportional to the
capacity of the cluster. Fig. 10(d) shows the solver latency under
different scales of clusters and jobs. We observe that the maximal
latency induced by the MILP solver is less than 10 seconds, which
is negligible compared to the long training time. This implies that
UNISCHED demonstrates high scalability in handling large-scale
GPU clusters and heavy workloads.
Effectiveness of joint optimization. The Selector adopts
joint optimization to decide on the job selection and resource
allocation simultaneously. To demonstrate its effectiveness, we
compare this strategy with the consolidation placement solution
adopted in CHRONUS [17]. We adjust the requested GPU amounts
of some jobs in the H MIX2 workload to get various ratios of
consolidation-hostile jobs. Fig. 11(a) presents the average JCT of
best-effort jobs (lines) and Rslo of SLO jobs (bars) respectively
for the two mechanisms. We have two observations: (1) The joint
optimization technique can remarkably decrease Rslo. Without
this technique, the Selector will fail to obtain a consolidation
solution for certain SLO jobs. Then these jobs will be placed in the
pending state, which could cause the violation of deadline require-
ments. Without joint optimization, the MILP solver will allocate
appropriate cell resources to SLO jobs without violating their
deadline constraint. Then Rslo becomes smaller. (2) The perfor-
mance gap between consolidation and co-optimization techniques
grows with the increase of the consolidation-hostile proportion.
This demonstrates that consolidation-hostile jobs are sources to
undermine performance but co-optimization can mitigate them.
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Fig. 11: Performance comparison between co-optimizing tech-
nique and consolidation in Rslo (a) and normalized average latency
(b) over different percentages of consolidation-hostile jobs.

6.3 Comparison between UNISCHED and CHRONUS

To clearly present the performance impact of our proposed new
designs, we make a detailed performance comparison between
UNISCHED and CHRONUS for a mix of SLO and best-effort
workloads. Our proposed Estimator still can contribute to
the scenario where the cluster only accommodates SLO jobs,

however, the benefit of Selector is limited in such a scenario.
Fig. 12(a) shows Rslo of these designs for the mix workloads.
We observe that UNISCHED can reduce up to 5.2% Rslo com-
pared to CHRONUS. To explore the performance gap between
UNISCHED and CHRONUS, we integrate the Estimator with
CHRONUS to predict the job duration, especially for jobs with
performance-based stopping criteria. Our observation is that the
Estimator plays an important role in reducing Rslo: CHRONUS

+ Estimator gets a maximum Rslo reduction of 4.2% in
H MIX1 trace compared to CHRONUS. Besides, we also per-
form an analysis of the combination of the Selector with
CHRONUS. The benefit of the Selector is not comparable to
the Estimator, and the maximal Rslo reduction brought by the
Selector is 1.5% in P MIX1 trace compared to CHRONUS.

Fig. 12(b) presents the average JCT of UNISCHED and
CHRONUS as well as other variants over the mix workloads. The
reduction of the DLT job latency arises from two aspects: (1) we
use the accurate job duration time estimation for best-effort jobs
(Estimator), and (2) we distinguish the SLO and best-effort
jobs, and it would provide more GPU resources to best-effort
jobs when SLO jobs are not emergent (Selector). We observe
the Estimator improves the throughput of best-effort jobs up
to 1.73× compared to CHRONUS for the Helios trace. However,
UNISCHED enjoys relatively moderate performance gains. Higher
Rslo of CHRONUS also indicates that more resources are allo-
cated to best-effort jobs. Hence, CHRONUS can even outperform
UNISCHED in the P MIX2 trace. Furthermore, early work [23]
points out that the job duration distribution of Helios is more un-
balanced than that of Philly. In this context, accurate job duration
prediction offers notable advantages in Helios with unbalanced
job duration distribution. Additionally, the Selector balances
the resource allocation for SLO and best-effort jobs well, and
it shows positive effects on the latency reduction over different
simulated traces, and speeds up the throughput of best-effort
jobs by 1.04 − 1.66×. Overall, our Estimator offers superior
SLO enforcement compared to the Selector across different
workloads. Additionally, it outperforms CHRONUS in terms of
latency reduction for best-effort jobs. This mainly attributes to the
accurate job duration. The Selector always presents a positive
impact on the latency reduction for best-effort jobs and deadline
guarantee for SLO jobs.

7 RELATED WORKS

Deadline-aware scheduling. Deadline-aware scheduling was in-
vestigated in the big data scenario, and modeled it as an MILP
problem [13], [22]. However, these solutions are not tailored to
DLT jobs and become less effective in GPU cluster scheduling.
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Fig. 12: Comparison between UNISCHED, CHRONUS w/ the
Estimator, CHRONUS w/ the Selector, and CHRONUS in
Rslo (a) and normalized average latency (b) over workloads.

Recent research [14], [16], [18] switched to the SLO requirements
of DLT jobs. However, these solutions do not consider the mixture
of SLO and best-effort jobs with different stopping criteria, which
are practical in GPU clusters.
Deep learning schedulers. Various DLT job scheduling systems
have been developed to achieve different goals. Some systems
focus on improving resource utilization, such as Gandiva [1] and
Antman [5]. Other systems aim to boost job performance, such
as Tiresias [3] and Optimus [19]. Several systems have also been
proposed to maintain resource allocation fairness, such as Themis
[7], Gandivafair [8], and ASTRAEA [40]. However, none of
these solutions are effective in SLO enforcement, which motivated
us to develop UNISCHED tailored to DLT jobs.

8 CONCLUSION AND FUTURE WORK

In this paper, we design and implement UNISCHED, a novel
DLT scheduling system to satisfy various user demands and
stopping criteria of DLT jobs. We propose innovative techniques
to estimate job duration and allocate resources in an effective and
efficient way. We conduct comprehensive simulations to show that
UNISCHED outperforms various state-of-the-art schedulers. The
prototype implementation of UNISCHED on Kubernetes further
validates the practicability of our system.

We consider the following directions as future work. (1)
This paper mainly considers and evaluate the homogeneous GPU
clusters. It is easy to extend UNISCHED to heterogeneous clusters.
A new binary variable is needed in the constraint and objective to
denote the type of GPU resources. We will implement UNISCHED

on heterogeneous GPU clusters in the near future. (2) Auto-scaling
allows a user to specify a range of GPUs for his DLT job. To enable
this flexible mechanism, several binary variables can be introduced
to represent the selection of every value in that range in the MILP
optimization. This may potentially incur larger search costs.
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